Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

X-linked adrenoleukodystrophy

Abstract

X-linked adrenoleukodystrophy (X-ALD) is caused by a defect in the gene ABCD1, which maps to Xq28 and codes for a peroxisomal membrane protein that is a member of the ATP-binding cassette transporter superfamily. X-ALD is panethnic and affects approximately 1:20,000 males. Phenotypes include the rapidly progressive childhood, adolescent, and adult cerebral forms; adrenomyeloneuropathy, which presents as slowly progressive paraparesis in adults; and Addison disease without neurologic manifestations. These phenotypes are frequently misdiagnosed, respectively, as attention-deficit hyperactivity disorder (ADHD), multiple sclerosis, or idiopathic Addison disease. Approximately 50% of female carriers develop a spastic paraparesis secondary to myelopathic changes similar to adrenomyeloneuropathy. Assays of very long chain fatty acids in plasma, cultured chorion villus cells and amniocytes, and mutation analysis permit presymptomatic and prenatal diagnosis, as well as carrier identification. The timely use of these assays is essential for genetic counseling and therapy. Early diagnosis and treatment can prevent overt Addison disease, and significantly reduce the frequency of the severe childhood cerebral phenotype. A promising new method for mass newborn screening has been developed, the implementation of which will have a profound effect on the diagnosis and therapy of X-ALD.

Key Points

  • X-linked adrenoleukodystrophy (X-ALD) is characterized by elevated levels of very long chain fatty acids, which occur secondary to defects in peroxisome β-oxidation associated with mutations in the ABCD1 gene

  • X-ALD is characterized by variable phenotypes affecting the nervous system and the adrenal glands

  • Treatments have focused on lowering levels of very long chain fatty acids using the compound Lorenzo's oil, and hematopoetic stem cell therapy

  • Newborn screening is in development, and this might alter the detection, monitoring and treatment of X-ALD

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization-weighted imaging of the cervical spinal cord

Similar content being viewed by others

References

  1. Bezman L et al. (2001) Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol 49: 512–517

    Article  CAS  PubMed  Google Scholar 

  2. Mosser J et al. (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361: 726–730

    Article  CAS  PubMed  Google Scholar 

  3. Kemp S et al. (2005) Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol Genet Metab 84: 144–151

    Article  CAS  PubMed  Google Scholar 

  4. Igarashi M et al. (1976) Fatty acid abnormality in adrenoleukodystrophy. J Neurochem 26: 851–860

    Article  CAS  PubMed  Google Scholar 

  5. Theda C et al. (1992) Phospholipids in X-linked adrenoleukodystrophy white matter: fatty acid abnormalities before the onset of demyelination. J Neurol Sci 110: 195–204

    Article  CAS  PubMed  Google Scholar 

  6. Paintlia AS et al. (2003) Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood ALD: implications for potential therapies. Neurobiol Dis 14: 425–439

    Article  CAS  PubMed  Google Scholar 

  7. Reinecke CJ et al. (1985) The correlation between biochemical and histopathological findings in adrenoleukodystrophy. J Neurol Sci 70: 21–38

    Article  CAS  PubMed  Google Scholar 

  8. Igarashi M et al. (1976) Brain gangliosides in adrenoleukodystrophy. J Neurochem 27: 327–328

    Article  CAS  Google Scholar 

  9. Bizzozero OA et al. (1991) Fatty acid composition of human myelin proteolipid protein in peroxisomal disorders. J Neurochem 56: 872–878

    Article  CAS  PubMed  Google Scholar 

  10. Moser AB et al. (1999) Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol 45: 100–110

    Article  CAS  PubMed  Google Scholar 

  11. Tsuji S et al. (1981) Abnormality of long-chain fatty acids in erythrocyte membrane sphingomyelin from patients with adrenoleukodystrophy. J Neurochem 36: 1046–1049

    Article  CAS  PubMed  Google Scholar 

  12. Moser HW et al. (1980) Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts. Ann Neurol 7: 542–549

    Article  CAS  PubMed  Google Scholar 

  13. Moser HW et al. (1982) The prenatal diagnosis of adrenoleukodystrophy. Demonstration of increased hexacosanoic acid levels in cultured amniocytes and fetal adrenal gland. Pediatr Res 16: 172–175

    Article  CAS  PubMed  Google Scholar 

  14. Singh I et al. (1984) Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res 18: 286–290

    Article  CAS  PubMed  Google Scholar 

  15. Poulos A et al. (1986) Accumulation and defective beta-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants. Clin Genet 29: 397–408

    Article  CAS  PubMed  Google Scholar 

  16. Kemp S et al. (1998) Gene redundancy and pharmacological gene therapy: implications for X- linked adrenoleukodystrophy. Nat Med 4: 1261–1268

    Article  CAS  PubMed  Google Scholar 

  17. Wanders RJ et al. (1987) Peroxisomal very long-chain fatty acid beta-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders. Clin Chim Acta 166: 255–263

    Article  CAS  PubMed  Google Scholar 

  18. Singh I et al. (1984) Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci USA 81: 4203–4207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hashimoto T (1996) Peroxisomal beta-oxidation: enzymology and molecular biology. Ann NY Acad Sci 804: 86–98

    Article  CAS  PubMed  Google Scholar 

  20. Wanders RJ (2004) Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab 83: 16–27

    Article  CAS  PubMed  Google Scholar 

  21. Uchiyama A et al. (1996) Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem 271: 30360–30365

    Article  CAS  PubMed  Google Scholar 

  22. Lazo O et al. (1988) Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Proc Natl Acad Sci USA 85: 7647–7651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wanders RJ et al. (1988) X-linked adrenoleukodystrophy: identification of the primary defect at the level of a deficient peroxisomal very long chain fatty acyl-CoA synthetase using a newly developed method for the isolation of peroxisomes from skin fibroblasts. J Inherit Metab Dis 11 (Suppl 2): 173–177

    CAS  PubMed  Google Scholar 

  24. McGuinness MC et al. (2003) Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy. Mol Cell Biol 23: 744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oezen I et al. (2005) Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency. Hum Mol Genet 14: 1127–1137

    Article  CAS  PubMed  Google Scholar 

  26. Tsuji S et al. (1981) Increased synthesis of hexacosanoic acid (C26:0) by cultured skin fibroblasts from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). Biochem J (Tokyo) 90: 1233–1236

    Article  CAS  Google Scholar 

  27. Ho JK et al. (1995) Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J Clin Invest 96: 1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi JK et al. (2002) Interactions of very long-chain saturated fatty acids with serum albumin. J Lipid Res 43: 1000–1010

    Article  CAS  PubMed  Google Scholar 

  29. Migeon BR et al. (1981) Adrenoleukodystrophy: evidence for X linkage, inactivation, and selection favoring the mutant allele in heterozygous cells. Proc Natl Acad Sci USA 78: 5066–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dean M et al. (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42: 1007–1017

    CAS  PubMed  Google Scholar 

  31. Netik A et al. (1999) Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum Mol Genet 8: 907–913

    Article  CAS  PubMed  Google Scholar 

  32. Pujol A et al. (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet 13: 2997–3006

    Article  CAS  PubMed  Google Scholar 

  33. Troffer-Charlier N et al. (1998) Mirror expression of adrenoleukodystrophy and adrenoleukodystrophy related genes in mouse tissues and human cell lines. Eur J Cell Biol 75: 254–264

    Article  CAS  PubMed  Google Scholar 

  34. X-linked Adrenoleukodystrophy Database [www.x-ald.nl]

  35. Kemp S et al. (2001) ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat 18: 499–515

    Article  CAS  PubMed  Google Scholar 

  36. Mosser J et al. (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 3: 265–271

    Article  CAS  PubMed  Google Scholar 

  37. Braiterman LT et al. (1999) Peroxisomal very long chain fatty acid beta-oxidation activity is determined by the level of adrenodeukodystrophy protein (ALDP) expression. Mol Genet Metab 66: 91–99

    Article  CAS  PubMed  Google Scholar 

  38. Wanders RJ et al. (2006) The peroxisomal ABC transporter family. Pflugers Arch [doi: 10.1007/s00424-006-0142-x]

    Article  CAS  PubMed  Google Scholar 

  39. Moser HW et al. (2001) X-linked adrenoleukodystrophy. In The Metabolic and Molecular Bases of Inherited Disease, edn 8, 3257–3301 (Eds Scriver CR et al.) New York: McGraw-Hill

    Google Scholar 

  40. Moser HW et al. (1992) Adrenoleukodystrophy: phenotypic variability and implications for therapy. J Inherit Metab Dis 15: 645–664

    Article  CAS  PubMed  Google Scholar 

  41. Smith KD et al. (1999) X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res 24: 521–535

    Article  CAS  PubMed  Google Scholar 

  42. Schaumburg HH et al. (1975) Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch Neurol 32: 577–591

    Article  CAS  PubMed  Google Scholar 

  43. Ito M et al. (2001) Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J Neuropathol Exp Neurol 60: 1004–1019

    Article  CAS  PubMed  Google Scholar 

  44. Powers JM et al. (1992) The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 51: 630–643

    Article  CAS  PubMed  Google Scholar 

  45. Powers JM et al. (2005) Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol 64: 1067–1079

    Article  CAS  PubMed  Google Scholar 

  46. Budka H et al. (1976) Spastic paraplegia associated with Addison's disease: adult variant of adreno-leukodystrophy. J Neurol 213: 237–250

    Article  CAS  PubMed  Google Scholar 

  47. Griffin JW et al. (1977) Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology 27: 1107–1113

    Article  CAS  PubMed  Google Scholar 

  48. Powers JM et al. (2000) Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 59: 89–102

    Article  CAS  PubMed  Google Scholar 

  49. Powers JM et al. (2001) The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol 60: 493–501

    Article  CAS  PubMed  Google Scholar 

  50. Dubey P et al. (2005) Spectroscopic evidence of cerebral axonopathy in patients with 'pure' adrenomyeloneuropathy. Neurology 64: 304–310

    Article  CAS  PubMed  Google Scholar 

  51. Chaudhry V et al. (1996) Nerve conduction studies in adrenomyeloneuropathy. J Neurol Neurosurg Psychiatry 61: 181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Geel BM et al. (1996) Peripheral nerve abnormalities in adrenomyeloneuropathy: a clinical and electrodiagnostic study. Neurology 46: 112–118

    Article  CAS  PubMed  Google Scholar 

  53. van Geel BM et al. (2001) Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 49: 186–194

    Article  CAS  PubMed  Google Scholar 

  54. Case records of the Massachusetts General Hospital (1979) Weekly clinicopathological exercises. Case 18-1979. N Engl J Med 300: 1037–1045

  55. Jorge P et al. (1994) X-linked adrenoleukodystrophy in patients with idiopathic Addison disease. Eur J Pediatr 153: 594–597

    Article  CAS  PubMed  Google Scholar 

  56. Powers JM et al. (1980) A correlative study of the adrenal cortex in adreno-leukodystrophy—evidence for a fatal intoxication with very long chain saturated fatty acids. Invest Cell Pathol 3: 353–376

    CAS  PubMed  Google Scholar 

  57. Boehm CD et al. (1999) Accurate DNA-based diagnostic and carrier testing for X-linked adrenoleukodystrophy. Mol Genet Metab 66: 128–136

    Article  CAS  PubMed  Google Scholar 

  58. Cox C et al. (2006) Cognitive evaluation of neurologically asymptomatic boys with X-linked adrenoleukodystrophy. Arch Neurol 63: 69–73

    Article  PubMed  Google Scholar 

  59. Moser HW et al. (1991) Clinical aspects of adrenoleukodystrophy and adrenomyeloneuropathy. Dev Neurosci 13: 254–261

    Article  CAS  PubMed  Google Scholar 

  60. Restuccia D et al. (1997) Neurophysiological abnormalities in adrenoleukodystrophy carriers. Evidence of different degrees of central nervous system involvement. Brain 120: 1139–1148

    Article  PubMed  Google Scholar 

  61. Fatemi A et al. (2003) MRI and proton MRSI in women heterozygous for X-linked adrenoleukodystrophy. Neurology 60: 1301–1307

    Article  CAS  PubMed  Google Scholar 

  62. el-Deiry SS et al. (1997) Assessment of adrenal function in women heterozygous for adrenoleukodystrophy. J Clin Endocrinol Metab 82: 856–860

    CAS  PubMed  Google Scholar 

  63. Powers JM et al. (1987) Pathologic findings in adrenoleukodystrophy heterozygotes. Arch Pathol Lab Med 111: 151–153

    CAS  PubMed  Google Scholar 

  64. Di Biase A et al. (2004) Free radical release in C6 glial cells enriched in hexacosanoic acid: implication for X-linked adrenoleukodystrophy pathogenesis. Neurochem Int 44: 215–221

    Article  CAS  PubMed  Google Scholar 

  65. Vargas CR et al. (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688: 26–32

    Article  CAS  PubMed  Google Scholar 

  66. Gilg AG et al. (2000) Inducible nitric oxide synthase in the central nervous system of patients with X-adrenoleukodystrophy. J Neuropathol Exp Neurol 59: 1063–1069

    Article  CAS  PubMed  Google Scholar 

  67. Moody DB et al. (1999) The molecular basis of CD1-mediated presentation of lipid antigens. Immunol Rev 172: 285–296

    Article  CAS  PubMed  Google Scholar 

  68. Linnebank M et al. (2006) Methionine metabolism and phenotypic variability in X-linked adrenoleukodystrophy. Neurology 66: 442–443

    Article  CAS  PubMed  Google Scholar 

  69. Moser HW et al. (2005) Adrenoleukodystrophy: new approaches to a neurodegenerative disease. JAMA 294: 3131–3134

    Article  CAS  PubMed  Google Scholar 

  70. Valianpour F et al. (2003) Analysis of very long chain fatty acids using electrospray ionization mass spectrometry. Mol Genet Metab 79: 189–196

    Article  CAS  PubMed  Google Scholar 

  71. Moser HW et al. (1983) Identification of female carriers of adrenoleukodystrophy. J Pediatr 103: 54–59

    Article  CAS  PubMed  Google Scholar 

  72. Moser AB and Moser HW (1999) The prenatal diagnosis of X-linked adrenoleukodystrophy. Prenat Diagn 19: 46–48

    Article  CAS  PubMed  Google Scholar 

  73. Kumar AJ et al. (1987) Adrenoleukodystrophy: correlating MR imaging with CT. Radiology 165: 497–504

    Article  CAS  PubMed  Google Scholar 

  74. Loes DJ et al. (2003) Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 61: 369–374

    Article  CAS  PubMed  Google Scholar 

  75. Eichler FS et al. (2002) Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 58: 901–907

    Article  CAS  PubMed  Google Scholar 

  76. Oz G et al. (2005) Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64: 434–441

    Article  CAS  PubMed  Google Scholar 

  77. Dubey P et al. (2005) Diffusion tensor-based imaging reveals occult abnormalities in adrenomyeloneuropathy. Ann Neurol 58: 758–766

    Article  PubMed  Google Scholar 

  78. Fatemi A et al. (2005) Magnetization transfer MRI demonstrates spinal cord pathology in adrenomyeloneuropathy. Neurology 64: 1739–1745

    Article  CAS  PubMed  Google Scholar 

  79. McGovern MM et al. (2003) Biochemical effect of intravenous arginine butyrate in X-linked adrenoleukodystrophy. J Pediatr 142: 709–713

    Article  CAS  PubMed  Google Scholar 

  80. Pai GS et al. (2000) Lovastatin therapy for X-linked adrenoleukodystrophy: clinical and biochemical observations on 12 patients. Mol Genet Metab 69: 312–322

    Article  CAS  PubMed  Google Scholar 

  81. Fourcade S et al. (2003) Thyroid hormone induction of the adrenoleukodystrophy-related gene (ABCD2). Mol Pharmacol 63: 1296–1303

    Article  CAS  PubMed  Google Scholar 

  82. Benhamida S et al. (2003) Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Mol Ther 7: 317–324

    Article  CAS  PubMed  Google Scholar 

  83. Dubey P et al. (2005) Adrenal insufficiency in asymptomatic adrenoleukodystrophy patients identified by very long chain fatty acid screening. J Pediatr 146: 528–532

    Article  PubMed  Google Scholar 

  84. Zhang LX et al. (2003) Clinical and electrophysiological improvement of adrenomyeloneuropathy with steroid treatment. J Neurol Neurosurg Psychiatry 74: 822–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rizzo WB et al. (1989) Dietary erucic acid therapy for X-linked adrenoleukodystrophy. Neurology 39: 1415–1422

    Article  CAS  PubMed  Google Scholar 

  86. van Geel BM et al. (1999) Progression of abnormalities in adrenomyeloneuropathy and neurologically asymptomatic X-linked adrenoleukodystrophy despite treatment with 'Lorenzo's oil'. J Neurol Neurosurg Psychiatry 67: 290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uziel G et al. (1991) Experience on therapy of adrenoleukodystrophy and adrenomyeloneuropathy. Dev Neurosci 13: 274–279

    Article  CAS  PubMed  Google Scholar 

  88. Aubourg P et al. (1993) A two-year trial of oleic and erucic acids ('Lorenzo's oil') as treatment for adrenomyeloneuropathy. N Engl J Med 329: 745–752

    Article  CAS  PubMed  Google Scholar 

  89. Rizzo WB et al. (1990) X-linked adrenoleukodystrophy: biochemical and clinical efficacy of dietary erucic acid therapy. In Adrenoleukodystrophy and other Peroxisomal Disorders, 149–162 (Eds Uziel G et al.) Amsterdam: Excerpta Medica

    Google Scholar 

  90. Moser HW et al. (2005) Follow-up of 89 Lorenzo's Oil treated asymptomatic adrenoleukodystrophy patients. Arch Neurol 62: 1073–1080

    Article  PubMed  Google Scholar 

  91. Peters C et al. (2004) Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104: 881–888

    Article  CAS  PubMed  Google Scholar 

  92. Koehler W and Sokolowski P (2005) Clinical phenotypes, diagnosis and treatment of adulthood X-linked adrenoleukodystrophy. In Understanding and Treating Adrenoleukodystrophy. Present State and Future Perspectives, 28–60 (Eds Berger J et al.) SPS Verlagsgessellschaft: Heilbronn

    Google Scholar 

  93. Aubourg P et al. (1990) Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med 322: 1860–1866

    Article  CAS  PubMed  Google Scholar 

  94. Shapiro E et al. (2000) Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 356: 713–718

    Article  CAS  PubMed  Google Scholar 

  95. Hickey WF and Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239: 290–292

    Article  CAS  PubMed  Google Scholar 

  96. Unger ER et al. (1993) Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 52: 460–470

    Article  CAS  PubMed  Google Scholar 

  97. Nowaczyk MJ et al. (1997) Immunoablation does not delay the neurologic progression of X-linked adrenoleukodystrophy. J Pediatr 131: 453–455

    Article  CAS  PubMed  Google Scholar 

  98. Mahmood A et al. (2005) Evaluating survival in nontransplanted boys with the cerebral phenotype of X-linked adrenoleukodystrophy [abstract]. Ann Neurol 58 (Suppl 9): 52a

    Google Scholar 

  99. Loes DJ et al. (1994) Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 15: 1761–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hubbard WC et al. (2006) Combined liquid chromatography–tandem mass spectrometry as an analytical method for high throughput screening for X-linked adrenoleukodystrophy and other peroxisomal disorders: preliminary findings. Mol Genet Metab 89: 185–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Johns Hopkins University School of Medicine General Clinical Research Center grant MO-1-R00052 from the National Center for Research Resources/ National Institutes of Health, Bethesda, MD, and grants HD 39276 and HD 10981 from the National Institutes of Health, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald V Raymond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, H., Mahmood, A. & Raymond, G. X-linked adrenoleukodystrophy. Nat Rev Neurol 3, 140–151 (2007). https://doi.org/10.1038/ncpneuro0421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing