Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GM1 structure determines SV40-induced membrane invagination and infection

Abstract

Incoming simian virus 40 (SV40) particles enter tight-fitting plasma membrane invaginations after binding to the carbohydrate moiety of GM1 gangliosides in the host cell plasma membrane through pentameric VP1 capsid proteins. This is followed by activation of cellular signalling pathways, endocytic internalization and transport of the virus via the endoplasmic reticulum to the nucleus. Here we show that the association of SV40 (as well as isolated pentameric VP1) with GM1 is itself sufficient to induce dramatic membrane curvature that leads to the formation of deep invaginations and tubules not only in the plasma membrane of cells, but also in giant unilamellar vesicles (GUVs). Unlike native GM1 molecules with long acyl chains, GM1 molecular species with short hydrocarbon chains failed to support such invagination, and endocytosis and infection did not occur. To conceptualize the experimental data, a physical model was derived based on energetic considerations. Taken together, our analysis indicates that SV40, other polyoma viruses and some bacterial toxins (Shiga and cholera) use glycosphingolipids and a common pentameric protein scaffold to induce plasma membrane curvature, thus directly promoting their endocytic uptake into cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SV40 infection and endocytosis depend on GM1 hydrocarbon chain structure.
Figure 2: SV40 binding induces caveolin-independent membrane invagination in cells.
Figure 3: SV40-induced membrane invagination on model membranes is dependent on GM1 hydrocarbon chain structure.
Figure 4: Induction of membrane invaginations by GM1-binding pentamer units.
Figure 5: Clustering and domain formation analysis.
Figure 6: Physical parameters controlling membrane invagination by SV40.

Similar content being viewed by others

References

  1. Liddington, R. C. et al. Structure of simian virus 40 at 3.8-A resolution. Nature 354, 278–284 (1991).

    Article  CAS  Google Scholar 

  2. Neu, U., Woellner, K., Gauglitz, G. & Stehle, T. Structural basis of GM1 ganglioside recognition by simian virus 40. Proc. Natl Acad. Sci. USA 105, 5219–5224 (2008).

    Article  CAS  Google Scholar 

  3. Campanero-Rhodes, M. A. et al. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 81, 12846–12858 (2007).

    Article  CAS  Google Scholar 

  4. Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).

    Article  CAS  Google Scholar 

  5. Kukura, P., Ewers, H., Müller, C., Renn, A., Helenius, A. & Sandoghdar, V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods 6, 923–927 (2009).

    Article  CAS  Google Scholar 

  6. Ewers, H. et al. Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett. 7, 2263–2266 (2007).

    Article  CAS  Google Scholar 

  7. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  Google Scholar 

  8. Ewers, H. et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl Acad. Sci. USA 102, 15110–15115 (2005).

    Article  CAS  Google Scholar 

  9. Richards, A. A., Stang, E., Pepperkok, R. & Parton, R. G. Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell 13, 1750–1764 (2002).

    Article  CAS  Google Scholar 

  10. Hummeler, K., Tomassini, N. & Sokol, F. Morphological aspects of the uptake of simian virus 40 by permissive cells. J. Virol. 6, 87–93 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Damm, E. M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    Article  CAS  Google Scholar 

  12. Kartenbeck, J., Stukenbrok, H. & Helenius, A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109, 2721–2729 (1989).

    Article  CAS  Google Scholar 

  13. Schelhaas, M. et al. Simian virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131, 516–529 (2007).

    Article  CAS  Google Scholar 

  14. Torgersen, M. L., Skretting, G., van Deurs, B. & Sandvig, K. Internalization of cholera toxin by different endocytic mechanisms. J. Cell Sci. 114, 3737–3747 (2001).

    CAS  PubMed  Google Scholar 

  15. Sandvig, K. et al. Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol. 117, 131–141 (2002).

    Article  CAS  Google Scholar 

  16. Gilbert, J. et al. Ganglioside GD1a restores infectibility to mouse cells lacking functional receptors for polyomavirus. J. Virol. 79, 615–618 (2005).

    Article  CAS  Google Scholar 

  17. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007).

    Article  CAS  Google Scholar 

  18. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  19. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

  20. Lencer, W. I. & Saslowsky, D. Raft trafficking of AB5 subunit bacterial toxins. Biochim. Biophys. Acta 1746, 314–321 (2005).

    Article  CAS  Google Scholar 

  21. Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    Article  CAS  Google Scholar 

  22. Hammond, A. T. et al. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA 102, 6320–6325 (2005).

    Article  CAS  Google Scholar 

  23. Wolf, A. A. et al. Attenuated endocytosis and toxicity of a mutant cholera toxin with decreased ability to cluster ganglioside GM1 molecules. Infect. Immun. 76, 1476–1484 (2008).

    Article  CAS  Google Scholar 

  24. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  Google Scholar 

  25. Ichikawa, S., Nakajo, N., Sakiyama, H. & Hirabayashi, Y. A mouse B16 melanoma mutant deficient in glycolipids. Proc. Natl Acad. Sci. USA 91, 2703–2707 (1994).

    Article  CAS  Google Scholar 

  26. Smith, A. E., Lilie, H. & Helenius, A. Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett. 555, 199–203 (2003).

    Article  CAS  Google Scholar 

  27. Schwarzmann, G., Hoffmann-Bleihauer, P., Schubert, J., Sandhoff, K. & Marsh, D. Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study. Biochemistry 22, 5041–5048 (1983).

    Article  CAS  Google Scholar 

  28. Merritt, E. A. et al. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166–175 (1994).

    Article  CAS  Google Scholar 

  29. Dangoria, N. S., Breau, W. C., Anderson, H. A., Cishek, D. M. & Norkin, L. C. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J. Gen. Virol. 77 (Pt 9), 2173–2182 (1996).

    Article  Google Scholar 

  30. Chai, W., Stoll, M. S., Galustian, C., Lawson, A. M. & Feizi, T. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol. 362, 160–195 (2003).

    Article  CAS  Google Scholar 

  31. Sandalon, Z. & Oppenheim, A. Self-assembly and protein-protein interactions between the SV40 capsid proteins produced in insect cells. Virology 237, 414–421 (1997).

    Article  CAS  Google Scholar 

  32. Kosukegawa, A. et al. Purification and characterization of virus-like particles and pentamers produced by the expression of SV40 capsid proteins in insect cells. Biochim. Biophys. Acta 1290, 37–45 (1996).

    Article  Google Scholar 

  33. Yan, Y., Stehle, T., Liddington, R. C., Zhao, H. & Harrison, S. C. Structure determination of simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold electron-density averaging. Structure 4, 157–164 (1996).

    Article  CAS  Google Scholar 

  34. Richterova, Z. et al. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75, 10880–10891 (2001).

    Article  CAS  Google Scholar 

  35. Gilbert, J. M. & Benjamin, T. L. Early steps of polyomavirus entry into cells. J. Virol. 74, 8582–8588 (2000).

    Article  CAS  Google Scholar 

  36. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  Google Scholar 

  37. Stang, E., Kartenbeck, J. & Parton, R. G. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8, 47–57 (1997).

    Article  CAS  Google Scholar 

  38. Stehle, T., Yan, Y., Benjamin, T. L. & Harrison, S. C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163 (1994).

    Article  CAS  Google Scholar 

  39. Roitman-Shemer, V., Stokrova, J., Forstova, J. & Oppenheim, A. Assemblages of simian virus 40 capsid proteins and viral DNA visualized by electron microscopy. Biochem. Biophys. Res. Commun. 353, 424–430 (2007).

    Article  CAS  Google Scholar 

  40. Turnbull, W. B., Precious, B. L. & Homans, S. W. Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004).

    Article  CAS  Google Scholar 

  41. Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    Article  CAS  Google Scholar 

  42. Windschiegl, B. et al. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS ONE 4, e6238 (2009).

    Article  Google Scholar 

  43. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  Google Scholar 

  44. Anderson, H. A., Chen, Y. & Norkin, L. C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825–1834 (1996).

    Article  CAS  Google Scholar 

  45. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    Article  CAS  Google Scholar 

  46. Chai, W. et al. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass spectrometry. Anal. Chem. 78, 1581–1592 (2006).

    Article  CAS  Google Scholar 

  47. Cole, C. N. & Cozen, S. D. in Polyomaviridae: the viruses and their replication (ed. Knipe, D. M. & Howley, P. M. ) 2141–2229 (Lippincott-Raven Publishers, 2001).

    Google Scholar 

  48. Feizi, T., Stoll, M. S., Yuen, C. T., Chai, W. & Lawson, A. M. Neoglycolipids: probes of oligosaccharide structure, antigenicity, and function. Methods Enzymol. 230, 484–519 (1994).

    Article  CAS  Google Scholar 

  49. Facci, L. et al. Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J. Neurochem. 42, 299–305 (1984).

    Article  CAS  Google Scholar 

  50. Zha, X. et al. Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell Biol. 140, 39–47 (1998).

    Article  CAS  Google Scholar 

  51. Mathivet, L., Cribier, S. & Devaux, P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys. J. 70, 1112–1121 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss SystemsX.ch initiative, grant LipidX-2008/011 (to A.H.), the Human Frontier Science Program (to A.E.S., L.J. and P.S.), a FEBS fellowship (to H.E.), a CNRS fellowship (to W.R.), the Israel Science Foundation (Grant # 604/07 to A.O.), the Delegation Generale pour l'Armement (to L.B.), the Wellcome Trust (to W.C. and T.F.), Deutsche Forschungsgemeinschaft (to G.S.) and the European Regional Development Fund grant # 4212/04-01 (to K.B. and P.S.). H.E. thanks D. Choquet for his patience and support. The authors thank M. Abd-El-Latif for the preparation of VLPs and pentamers.

Author information

Authors and Affiliations

Authors

Contributions

H.E. and A.E.S. designed and performed the experiments involving infectious SV40; W.R. and V.C. designed and performed tubulation experiments in cells; A.E.S., J.K. and R.M. performed electron microscopy experiments; W.R., L.B., K.B. and Pe.S. designed and performed GUV experiments; W.C., G.S. and T.F. provided GM1 species; A.O. provided SV40 VLPs; S.D. and P.S. performed theoretical analysis; H.E., P.S., L.J. and A.H. wrote the manuscript; A.H. and L.J. supervised the work.

Corresponding author

Correspondence to Ari Helenius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Figures (PDF 1354 kb)

Supplementary Information

Supplementary Information Movie (MOV 995 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewers, H., Römer, W., Smith, A. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12, 11–18 (2010). https://doi.org/10.1038/ncb1999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing