Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I

An Addendum to this article was published on 01 May 2005

Abstract

c-Myc coordinates cell growth and division through a transcriptional programme that involves both RNA polymerase (Pol) II- and Pol III-transcribed genes. Here, we demonstrate that human c-Myc also directly enhances Pol I transcription of ribosomal RNA (rRNA) genes. rRNA synthesis and accumulation occurs rapidly following activation of a conditional MYC-ER allele (coding for a Myc–oestrogen-receptor fusion protein), is resistant to inhibition of Pol II transcription and is markedly reduced by c-MYC RNA interference. Furthermore, by using combined immunofluorescence and rRNA-FISH, we have detected endogenous c-Myc in nucleoli at sites of active ribosomal DNA (rDNA) transcription. Our data also show that c-Myc binds to specific consensus elements located in human rDNA and associates with the Pol I-specific factor SL1. The presence of c-Myc at specific sites on rDNA coincides with the recruitment of SL1 to the rDNA promoter and with increased histone acetylation. We propose that stimulation of rRNA synthesis by c-Myc is a key pathway driving cell growth and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: rRNA synthesis responds to c-Myc levels.
Figure 2: Analysis of pre-rRNA synthesis following Myc-ER activation.
Figure 3: Endogenous c-Myc localizes in nucleoli during the G0/G1 transition.
Figure 4: c-Myc binds to specific regions of human ribosomal DNA (rDNA).
Figure 5: Changes in Pol I machinery and histone acetylation at ribosomal DNA (rDNA) in response to c-Myc.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  2. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  Google Scholar 

  3. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  4. Lutz, W., Leon, J. & Eilers, M. Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61–71 (2002).

    CAS  PubMed  Google Scholar 

  5. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  Google Scholar 

  6. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  7. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  Google Scholar 

  8. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002).

    Article  CAS  Google Scholar 

  9. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  Google Scholar 

  10. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  Google Scholar 

  11. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  Google Scholar 

  12. Pierce, S.B. et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 131, 2317–2327 (2004).

    Article  CAS  Google Scholar 

  13. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that Myc regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    Article  CAS  Google Scholar 

  14. Guo, Q. M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000).

    CAS  Google Scholar 

  15. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    Article  CAS  Google Scholar 

  16. Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

  17. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  Google Scholar 

  18. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  Google Scholar 

  19. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  Google Scholar 

  20. Grandori, C., Mac, J., Siebelt, F., Ayer, D. E. & Eisenman, R. N. Myc–Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J. 15, 4344–4357 (1996).

    Article  CAS  Google Scholar 

  21. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  22. Gonzalez, I. L. & Sylvester, J. E. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27, 320–328 (1995).

    Article  CAS  Google Scholar 

  23. Arabi, A., Rustum, C., Hallberg, E. & Wright, A. P. Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J. Cell Sci. 116, 1707–1717 (2003).

    Article  CAS  Google Scholar 

  24. O'Sullivan, A. C., Sullivan, G. J. & McStay, B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell. Biol. 22, 657–668 (2002).

    Article  CAS  Google Scholar 

  25. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  Google Scholar 

  26. Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    Article  CAS  Google Scholar 

  27. Poortinga, G. et al. MAD1 and c-Myc regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    Article  CAS  Google Scholar 

  28. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  29. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  Google Scholar 

  30. Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N. & Clurman, B. E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol. 14, 1852–1857 (2004).

    Article  CAS  Google Scholar 

  31. Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    Article  CAS  Google Scholar 

  32. Kulkens, T., van der Sande, C. A., Dekker, A. F., van Heerikhuizen, H. & Planta, R. J. A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. EMBO J. 11, 4665–4674 (1992).

    Article  CAS  Google Scholar 

  33. White, R. J. RNA Polymerase I and III, growth control and cancer. Nature Rev. Mol. Cell Biol. 6, 69–79 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Comai and J. Flint for generous gifts of antibodies and A. Burdick and K. Robinson for technical assistance; J. Benanti, M. Welcker and B. Moorefield for critical reading of the manuscript; T. Ragoczy, S. Kosak, M. Lorincz and D. Dickerson in the Groudine laboratory for advice on FISH and run-on assays; T. Sawado for the ChIP protocol; and the Fred Hutchinson Image Analysis staff for help with DeltaVision microscopy. We are also grateful to R. Reeder for helpful discussions during the course of this work. Support for this work was from National Institutes of Health grants to C.G. D.A.G. and R.N.E.; and Cancer Research UK grants to R.J.W. R.N.E. is an American Cancer Society Research professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Grandori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, and S3, supplementary table S1 and movie legends (PDF 351 kb)

Supplementary Movie 1 (MOV 1353 kb)

Supplementary Movie 2 (MOV 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandori, C., Gomez-Roman, N., Felton-Edkins, Z. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7, 311–318 (2005). https://doi.org/10.1038/ncb1224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing