Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments

Abstract

The organization of secretory traffic remains unclear, mainly because of the complex structure and dynamics of the secretory pathway. We have thus studied a simplified system, a single synchronized traffic wave crossing an individual Golgi stack, using electron tomography. Endoplasmic-reticulum-to-Golgi carriers join the stack by fusing with cis cisternae and induce the formation of intercisternal tubules, through which they redistribute their contents throughout the stack. These tubules seem to be pervious to Golgi enzymes, whereas Golgi vesicles are depleted of both enzymes and cargo. Cargo then traverses the stack without leaving the cisternal lumen. When cargo exits the stack, intercisternal connections disappear. These findings provide a new view of secretory traffic that includes dynamic intercompartment continuities as key players.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nocodazole-induced secretory system during the 15 °C block.
Figure 2: Morphometric analysis of the structural changes in nocodazole-induced stacks during the passage of a cargo wave.
Figure 3: Tubular connections between successive cisternae during the passage of a cargo wave through nocodazole-induced stacks.
Figure 4: Progression of cargo through nocodazole-induced stacks.
Figure 5: Tubular connections between successive cisternae of Golgi stacks during traffic in non-perturbed cells.
Figure 6: Schematic model of the passage of a synchronized traffic wave through a single Golgi stack.

Similar content being viewed by others

References

  1. Bannykh, S. I. & Balch, W. E. Membrane dynamics at the endoplasmic reticulum–Golgi interface. J. Cell Biol. 138, 1–4 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mironov, A. A., Weidman, P. & Luini, A. Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J. Cell Biol. 138, 481–484 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Glick, B. S. & Malhotra, V. The curious status of the Golgi apparatus. Cell 95, 883–889 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Pelham, H. R. Traffic through the Golgi apparatus. J. Cell Biol. 155, 1099–1101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiss, M. & Nilsson, T. Protein sorting in the Golgi apparatus: a consequence of maturation and triggered sorting. FEBS Lett. 486, 2–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Menarguez, J. A. et al. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J. Cell Biol. 155, 1213–1224 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cosson, P., Amherdt, M., Rothman, J. E. & Orci, L. A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc. Natl Acad. Sci. USA 99, 12831–12834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kweon, H. S. et al. Golgi enzymes are enriched in perforated zones of Golgi cisternae but excluded from peri-Golgi vesicles. Mol. Biol. Cell (in the press).

  11. Pelham, H. R. EJCB-Lecture. SNAREs and the organization of the secretory pathway. Eur. J. Cell Biol. 74, 311–314 (1997).

    CAS  PubMed  Google Scholar 

  12. Klumperman, J. Transport between ER and Golgi. Curr. Opin. Cell Biol. 12, 445–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hauri, H. P., Kappeler, F., Andersson, H. & Appenzeller, C. ERGIC-53 and traffic in the secretory pathway. J. Cell Sci. 113, 587–596 (2000).

    CAS  PubMed  Google Scholar 

  14. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mironov, A. A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rambourg, A. & Clermont, Y. Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur. J. Cell Biol. 51, 189–200 (1990).

    CAS  PubMed  Google Scholar 

  18. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumann, U., Brandizzi, F. & Hawes, C. Protein transport in plant cells: in and out of the Golgi. Ann. Bot. (Lond.) 92, 167–180 (2003).

    Article  CAS  Google Scholar 

  20. Rabouille, C. et al. The Drosophila GMII gene encodes a Golgi alpha-mannosidase II. J. Cell Sci. 112, 3319–3330 (1999).

    CAS  PubMed  Google Scholar 

  21. Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kuismanen, E. & Saraste, J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol. 32, 257–274 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergmann, J. E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell Biol. 32, 85–110 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 274, 4389–4399 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat. Cell Biol. 3, 140–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Pelham, H. R. Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr. Opin. Cell Biol. 3, 585–591 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Orci, L., Schekman, R. & Perrelet, A. Interleaflet clear space is reduced in the membrane of COP I and COP II-coated buds/vesicles. Proc. Natl Acad. Sci. USA 93, 8968–8970 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polishchuk, E. V., Di Pentima, A., Luini, A. & Polishchuk, R. S. Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol. Biol. Cell 14, 4470–4485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pelham, H. R. & Rothman, J. E. The debate about transport in the Golgi--two sides of the same coin? Cell 102, 713–719 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Volchuk, A. et al. Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol. Biol. Cell 15, 1506–1518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pelham, H. Getting stuck in the Golgi. Traffic 1, 191–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Bretscher, M. S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Munro, S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14, 4695–4704 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cluett, E. B., Kuismanen, E. & Machamer, C. E. Heterogeneous distribution of the unusual phospholipid semilysobisphosphatidic acid through the Golgi complex. Mol. Biol. Cell 8, 2233–2240 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holthuis, J. C., Pomorski, T., Raggers, R. J., Sprong, H. & Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 1689–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Maxfield, F. R. & Wustner, D. Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4088 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marra, P. et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat. Cell Biol. 3, 1101–1113 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Mironov, A. Jr, Luini, A. & Mironov, A. A synthetic model of intra-Golgi traffic. Faseb J. 12, 249–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Hirschberg, K., Phair, R. D. & Lippincott-Schwartz, J. Kinetic analysis of intracellular trafficking in single living cells with vesicular stomatitis virus protein G-green fluorescent protein hybrids. Methods Enzymol. 327, 69–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Weidman, P. J. Anterograde transport through the Golgi complex: do Golgi tubules hold the key? Trends Cell Biol. 5, 302–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Beznoussenko, G. V. & Mironov, A. A. Models of intracellular transport and evolution of the Golgi complex. Anat. Rec. 268, 226–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Horton, A. C. & Ehlers, M. D. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marsh, B. J., Volkmann, N., McIntosh, J. R. & Howell, K. E. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc. Natl Acad. Sci. USA 101, 5565–5570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicolas, M. T., Bassot, J. M. & Nicolas, G. Immunogold labeling of luciferase in the luminous bacterium Vibrio harveyi after fast-freeze fixation and different freeze-substitution and embedding procedures. J. Histochem. Cytochem. 37, 663–674 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. Mironov and A. Luini are principal investigators and have contributed equally to this project. We would like to thank all those who provided us with antibodies and cDNAs, P. Lupetti for assistance with fast-freezing experiments, C. P. Berrie for critical reading of the manuscript and E. Fontana for artwork preparation. We acknowledge financial support from the AIRC, Telethon Italy and a European Research Training Network (A.L. and K.N.J.B.). A.J.K. is supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), and W.J.C.G. and K.N.J.B. by FEI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander A. Mironov or Alberto Luini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trucco, A., Polishchuk, R., Martella, O. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6, 1071–1081 (2004). https://doi.org/10.1038/ncb1180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing