Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages

Abstract

Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop−/− macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Free-cholesterol-induced apoptosis in macrophages is blocked by a low dose of U18666A.
Figure 2: The endoplasmic reticulum, not the plasma membrane, is the site of cholesterol-Induced apoptosis.
Figure 3: Free cholesterol loading of macrophages activates the UPR.
Figure 4: CHOP is expressed in the atherosclerotic lesions of Apoe−/− mice.
Figure 5: Free cholesterol loading depletes endoplasmic reticulum calcium stores.
Figure 6: Disruption of the PERK enhances cholesterol-induced apoptosis.
Figure 7: Disruption of CHOP attenuates free-cholesterol-induced apoptosis in macrophages.

Similar content being viewed by others

References

  1. Shio, H., Haley, N.J. & Fowler, S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab. Invest. 41, 160–167 (1979).

    CAS  PubMed  Google Scholar 

  2. Rapp, J.H., Connor, W.E., Lin, D.S., Inahara, T. & Porter, J.M. Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression. J. Lipid Res. 24, 1329–1335 (1983).

    CAS  PubMed  Google Scholar 

  3. Small, D.M., Bond, M.G., Waugh, D., Prack, M. & Sawyer, J.K. Physicochemical and histological changes in the arterial wall of non-human primates during progression and regression of atherosclerosis. J. Clin. Invest. 73, 1590–1605 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kruth, H.S. & Fry, D.L. Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin. Exp. Mol. Pathol. 40, 288–294 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Libby, P. & Clinton, S.K. The role of macrophages in atherogenesis. Curr. Opin. Lipidol. 4, 355–363 (1993).

    Article  CAS  Google Scholar 

  6. Ball, R.Y. et al. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis 114, 45–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Fazio, S. et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J. Clin. Invest. 107, 163–171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kellner-Weibel, G. et al. Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler. Thromb. Vasc. Biol. 18, 423–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Yao, P.M. & Tabas, I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J. Biol. Chem. 275, 23807–23813 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Yao, P.M. & Tabas, I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J. Biol. Chem. 276, 42468–42476 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kellner-Weibel, G., Geng, Y.J. & Rothblat, G.H. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis 146, 309–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yeagle, P.L. Modulation of membrane function by cholesterol. Biochimie 73, 1303–1310 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Bretscher, M.S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Travers, K.J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, D. et al. Macrophages deficient in CTP:Phosphocholine cytidylyltransferase-α are viable under normal culture conditions but are highly susceptible to free cholesterol-induced death. Molecular genetic evidence that the induction of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response. J. Biol. Chem. 275, 35368–35376 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Underwood, K.W., Andemariam, B., McWilliams, G.L. & Liscum, L. Quantitative analysis of hydrophobic amine inhibition of intracellular cholesterol transport. J. Lipid Res. 37, 1556–1568 (1996).

    CAS  PubMed  Google Scholar 

  24. Shiratori, Y., Okwu, A.K. & Tabas, I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 269, 11337–11348 (1994).

    CAS  PubMed  Google Scholar 

  25. Aikawa, K., Furuchi, T., Fujimoto,Y., Arai, H. & Inoue, K. Structure-specific inhibition of lysosomal cholesterol transport in macrophages by various steroids. Biochim. Biophys. Acta 1213, 127–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Liscum, L. & Klansek, J.J. Niemann-Pick disease type C. Curr. Opin. Lipidol. 9, 131–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, B. & Tabas, I. ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J. Biol. Chem. 277, 43271–43280 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Yancey, P.G. et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271, 16026–16034 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Christian, A.E., Haynes, M.P., Phillips, M.C. & Rothblat, G.H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38, 2264–2272 (1997).

    CAS  PubMed  Google Scholar 

  30. Khan, N. et al. Plasma membrane cholesterol: A possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42, 23–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X.Z. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272, 1347–1349 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Harding, H.P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Treiman, M. Regulation of the endoplasmic reticulum calcium storage during the unfolded protein response — significance in tissue ischemia? Trends Cardiovasc. Med. 12, 57–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Harding, H.P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. & Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249–1259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lange, Y. Tracking cell cholesterol with cholesterol oxidase. J. Lipid Res. 33, 315–321 (1992).

    CAS  PubMed  Google Scholar 

  44. Lange, Y., Ye, J., Rigney, M. & Steck, T.L. Cholesterol movement in Niemann-Pick Type C cells and in cells treated with amphiphiles. J. Biol. Chem. 275, 17468–17475 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Lange, Y. & Steck, T.L. Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts. J. Biol. Chem. 272, 13103–13108 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Graham, J.M. & Green, C. The properties of mitochondria enriched in vitro with cholesterol. Eur. J. Biochem. 12, 58–66 (1970).

    Article  CAS  PubMed  Google Scholar 

  47. Ross, A.C., Go, K.J., Heider, J.G. & Rothblat, G.H. Selective inhibition of acyl coenzyme A:cholesterol acyltransferase by compound 58–035. J. Biol. Chem. 259, 815–819 (1984).

    CAS  PubMed  Google Scholar 

  48. Basu, S.K., Goldstein, J.L., Anderson, R.G.W. & Brown, M.S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl Acad. Sci. USA 73, 3178–3182 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tabas, I., Boykow, G. & Tall, A. Rabbit liver microsomal ACAT: Smooth ER enzyme associated with a lipid ACAT inhibitor. Arteriosclerosis 8, 559A (1988).

    Google Scholar 

  50. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  51. Trogan, E. et al. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 99, 2234–2239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants HL54591, HL57560 and HL56984 to I.T, DK47119 and ES08681 to D.R. and HL61814 to E.A.F. We gratefully acknowledge R. Soccio and F. Wang for assistance with the CHOP Taqman and in-situ hybridization assays, respectively. We also thank Y. Zhang for technical assistance and R. Jungreis for help with the Perk−/− and Chop−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Tabas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, B., Yao, P., Li, Y. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5, 781–792 (2003). https://doi.org/10.1038/ncb1035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing