Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proposed diagnostic criteria and classification of basophilic leukemias and related disorders

Abstract

Basophils form a distinct cell lineage within the hematopoietic cell family. In various myeloid neoplasms, including chronic myeloid leukemia, basophilia is frequently seen. Acute and chronic basophilic leukemias, albeit rare, have also been described. However, no generally accepted criteria and classification of basophilic leukemias have been presented to date. To address this unmet need, a series of Working Conferences and other meetings were organized between March 2015 and March 2016. The current article provides a summary of consensus statements from these meetings, together with proposed criteria to delineate acute basophilic leukemia (ABL) from chronic basophilic leukemia (CBL) and primary forms of the disease where no preceding myeloid malignancy is detected, from the more common ‘secondary’ variants. Moreover, the term hyperbasophilia (HB) is proposed for cases with a persistent peripheral basophil count 1000 per μl of blood. This condition, HB, is highly indicative of the presence of an underlying myeloid neoplasm. Therefore, HB is an important checkpoint in the diagnostic algorithm and requires a detailed hematologic investigation. In these patients, an underlying myeloid malignancy is often found and is then labeled with the appendix -baso, whereas primary cases of ABL or CBL are very rare. The criteria and classification proposed in this article should facilitate the diagnosis and management of patients with unexplained basophilia and basophil neoplasms in routine practice, and in clinical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Valent P, Bettelheim P . Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv Immunol 1992; 52: 333–423.

    Article  CAS  PubMed  Google Scholar 

  2. Agis H, Willheim M, Sperr WR, Wilfing A, Krömer E, Kabrna E et al. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly−, CD14−, CD17−, colony-forming cell. J Immunol 1993; 151: 4221–4227.

    CAS  PubMed  Google Scholar 

  3. Agis H, Füreder W, Bankl HC, Kundi M, Sperr WR, Willheim M et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 1996; 87: 535–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kempuraj D, Saito H, Kaneko A, Fukagawa K, Nakayama M, Toru H et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 1999; 93: 3338–3346.

    CAS  PubMed  Google Scholar 

  5. Denburg JA, Richardson M, Telizyn S, Bienenstock J . Basophil/mast cell precursors in human peripheral blood. Blood 1983; 61: 775–780.

    CAS  PubMed  Google Scholar 

  6. Leary AG, Ogawa M . Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood 1984; 64: 78–83.

    CAS  PubMed  Google Scholar 

  7. Denburg JA, Telizyn S, Belda A, Dolovich J, Bienenstock J . Increased numbers of circulating basophil progenitors in atopic patients. J Allergy Clin Immunol 1985; 76: 466–472.

    Article  CAS  PubMed  Google Scholar 

  8. Otsuka H, Dolovich J, Befus D, Bienenstock J, Denburg J . Peripheral blood basophils, basophil progenitors, and nasal metachromatic cells in allergic rhinitis. Am Rev Respir Dis 1986; 133: 757–762.

    CAS  PubMed  Google Scholar 

  9. Arnalich F, Lahoz C, Larrocha C, Zamorano AF, Jimenez C, Gasalla R et al. Incidence and clinical significance of peripheral and bone marrow basophilia. J Med 1987; 18: 293–303.

    CAS  PubMed  Google Scholar 

  10. Gibson PG, Manning PJ, O'Byrne PM, Girgis-Gabardo A, Dolovich J, Denburg JA et al. Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils, and their progenitors. Am Rev Respir Dis 1991; 143: 331–335.

    Article  CAS  PubMed  Google Scholar 

  11. Denburg JA, Wilson WE, Bienenstock J . Basophil production in myeloproliferative disorders: increases during acute blastic transformation of chronic myeloid leukemia. Blood 1982; 60: 113–120.

    CAS  PubMed  Google Scholar 

  12. Denburg JA, Browman G . Prognostic implications of basophil differentiation in chronic myeloid leukemia. Am J Hematol 1988; 27: 110–114.

    Article  CAS  PubMed  Google Scholar 

  13. Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Project Group. J Natl Cancer Inst 1998; 90: 850–858.

    Article  CAS  PubMed  Google Scholar 

  14. Steegmann JL, Odriozola J, Rodriguez-Salvanés F, Giraldo P, García-Laraña J, Ferro MT et al. Stage, percentage of basophils at diagnosis, hematologic response within six months, cytogenetic response in the first year: the main prognostic variables affecting outcome in patients with chronic myeloid leukemia in chronic phase treated with interferon-alpha. Results of the CML89 trial of the Spanish Collaborative Group on interferon-alpha2a and CML. Haematologica 1999; 84: 978–987.

    CAS  PubMed  Google Scholar 

  15. Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood 2011; 118: 686–692.

    Article  CAS  PubMed  Google Scholar 

  16. Nissenblatt MJ . Basophilic transformation of chronic myelogenous leukemia. South Med J 1980; 73: 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  17. Ozaki M, Kanemitsu N, Yasukawa M, Fujita S . Basophilic crisis of chronic myelogenous leukemia. Jpn J Med 1989; 28: 67–71.

    Article  CAS  PubMed  Google Scholar 

  18. Yamauchi K, Arimori S . Basophilic crisis in chronic myelogenous leukemia: case report and literature review in Japan. Jpn J Med 1990; 29: 334–340.

    Article  CAS  PubMed  Google Scholar 

  19. Xue YQ, Guo Y, Lu DR, Gu J, Lu DW, Gong JX et al. A case of basophilic leukemia bearing simultaneous translocations t(8;21) and t(9;22). Cancer Genet Cytogenet 1991; 51: 215–221.

    Article  CAS  PubMed  Google Scholar 

  20. Pidala J, Pinilla-Ibarz J, Cualing HD . A case of acute basophilic leukemia arising from chronic myelogenous leukemia with development of t(7;8)(q32;q13). Cancer Genet Cytogenet 2008; 182: 46–49.

    Article  CAS  PubMed  Google Scholar 

  21. Rojas-Atencio A, Urdaneta K, Soto-Quintana M, Alvarez Nava F, Cañizales J, Solis E . Trisomy 19 and t(9;22) in a patient with acute basophilic leukemia. Case Rep Pathol 2011; 2011: 269491.

    PubMed  PubMed Central  Google Scholar 

  22. Sugimoto N, Ishikawa T, Gotoh S, Shinzato I, Matsushita A, Nagai K et al. Primary myelofibrosis terminated in basophilic leukemia and successful allogeneic bone marrow transplantation. Int J Hematol 2004; 80: 183–185.

    Article  PubMed  Google Scholar 

  23. Gupta R, Jain P, Anand M . Acute basophilic leukemia: case report. Am J Hematol 2004; 76: 134–138.

    Article  PubMed  Google Scholar 

  24. Wimazal F, Baumgartner C, Sonneck K, Zauner C, Geissler P, Schur S et al. Mixed-lineage eosinophil/basophil crisis in MDS: a rare form of progression. Eur J Clin Invest 2008; 38: 447–455.

    Article  CAS  PubMed  Google Scholar 

  25. Tang G, Woods LJ, Wang SA, Brettler D, Andersen M, Miron PM et al. Chronic basophilic leukemia: a rare form of chronic myeloproliferative neoplasm. Hum Pathol 2009; 40: 1194–1199.

    Article  PubMed  Google Scholar 

  26. Servitzoglou M, Grenzelia M, Baka M, Harisi M, Pourtsidis A, Bouhoutsou D et al. A novel karyotype in acute myeloid leukemia with basophilia. Pediatr Hematol Oncol 2014; 31: 149–156.

    Article  PubMed  Google Scholar 

  27. Shin SY, Koo SH, Kwon KC, Park JW, Ko CS, Jo DY . Monosomy 7 as the sole abnormality of an acute basophilic leukemia. Cancer Genet Cytogenet 2007; 172: 168–171.

    Article  CAS  PubMed  Google Scholar 

  28. Kritharis A, Brody J, Koduru P, Teichberg S, Allen SL . Acute basophilic leukemia associated with loss of gene ETV6 and protean complications. J Clin Oncol 2011; 29: e623–e626.

    Article  PubMed  Google Scholar 

  29. Saito H, Hatake K, Dvorak AM, Leiferman KM, Donnenberg AD, Arai N et al. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc Natl Acad Sci USA 1988; 85: 2288–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valent P, Schmidt G, Besemer J, Mayer P, Zenke G, Liehl E et al. Interleukin-3 is a differentiation factor for human basophils. Blood 1989; 73: 1763–1769.

    CAS  PubMed  Google Scholar 

  31. Mayer P, Valent P, Schmidt G, Liehl E, Bettelheim P . The in vivo effects of recombinant human interleukin-3: demonstration of basophil differentiation factor, histamine-producing activity, and priming of GM-CSF-responsive progenitors in nonhuman primates. Blood 1989; 74: 613–621.

    CAS  PubMed  Google Scholar 

  32. Valent P, Besemer J, Muhm M, Majdic O, Lechner K, Bettelheim P . Interleukin 3 activates human blood basophils via high-affinity binding sites. Proc Natl Acad Sci USA 1989; 86: 5542–5546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurimoto Y, de Weck AL, Dahinden CA . Interleukin 3-dependent mediator release in basophils triggered by C5a. J Exp Med 1989; 170: 467–479.

    Article  CAS  PubMed  Google Scholar 

  34. Denburg JA, Silver JE, Abrams JS . Interleukin-5 is a human basophilopoietin: induction of histamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophil-eosinophil progenitors. Blood 1991; 77: 1462–1468.

    CAS  PubMed  Google Scholar 

  35. Sillaber C, Geissler K, Scherrer R, Kaltenbrunner R, Bettelheim P, Lechner K et al. Type beta transforming growth factors promote interleukin-3 (IL-3)-dependent differentiation of human basophils but inhibit IL-3-dependent differentiation of human eosinophils. Blood 1992; 80: 634–641.

    CAS  PubMed  Google Scholar 

  36. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 2011; 477: 229–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valent P, Bettelheim P . The human basophil. Crit Rev Oncol Hematol 1990; 10: 327–352.

    Article  CAS  PubMed  Google Scholar 

  38. Bochner BS, Sterbinsky SA, Knol EF, Katz BJ, Lichtenstein LM, MacGlashan DW Jr et al. Function and expression of adhesion molecules on human basophils. J Allergy Clin Immunol 1994; 94: 1157–1162.

    Article  CAS  PubMed  Google Scholar 

  39. Bochner BS, Schleimer RP . Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev. 2001; 179: 5–15.

    Article  CAS  PubMed  Google Scholar 

  40. Falcone FH, Haas H, Gibbs BF . The human basophil: a new appreciation of its role in immune responses. Blood 2000; 96: 4028–4038.

    CAS  PubMed  Google Scholar 

  41. Arock M, Schneider E, Boissan M, Tricottet V, Dy M . Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol 2002; 71: 557–564.

    CAS  PubMed  Google Scholar 

  42. Kurosawa H, Eguchi M, Sakakibara H, Takahashi H, Furukawa T . Ultrastructural cytochemistry of congenital basophilic leukemia. Am J Pediatr Hematol Oncol 1987; 9: 27–32.

    Article  CAS  PubMed  Google Scholar 

  43. Agis H, Beil WJ, Bankl HC, Füreder W, Sperr WR, Ghannadan M et al. Mast cell-lineage versus basophil lineage involvement in myeloproliferative and myelodysplastic syndromes: diagnostic role of cell-immunophenotyping. Leuk Lymphoma 1996; 22: 187–204.

    Article  CAS  PubMed  Google Scholar 

  44. Duchayne E, Demur C, Rubie H, Robert A, Dastugue N . Diagnosis of acute basophilic leukemia. Leuk Lymphoma 1999; 32: 269–278.

    Article  CAS  PubMed  Google Scholar 

  45. Shvidel L, Shaft D, Stark B, Shtalrid M, Berrebi A, Resnitzky P . Acute basophilic leukaemia: eight unsuspected new cases diagnosed by electron microscopy. Br J Haematol 2003; 120: 774–781.

    Article  PubMed  Google Scholar 

  46. Sperr WR, Escribano L, Jordan JH, Schernthaner GH, Kundi M, Horny HP et al. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk Res 2001; 25: 529–536.

    Article  CAS  PubMed  Google Scholar 

  47. Agis H, Krauth MT, Böhm A, Mosberger I, Müllauer L, Simonitsch-Klupp I et al. Identification of basogranulin (BB1) as a novel immunohistochemical marker of basophils in normal bone marrow and patients with myeloproliferative disorders. Am J Clin Pathol 2006; 125: 273–281.

    Article  CAS  PubMed  Google Scholar 

  48. Agis H, Krauth MT, Mosberger I, Müllauer L, Simonitsch-Klupp I, Schwartz LB et al. Enumeration and immunohistochemical characterisation of bone marrow basophils in myeloproliferative disorders using the basophil specific monoclonal antibody 2D7. J Clin Pathol 2006; 59: 396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valent P, Orazi A, Büsche G, Schmitt-Gräff A, George TI, Sotlar K et al. Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget 2010; 1: 483–496.

    PubMed  PubMed Central  Google Scholar 

  50. Idoate MA, Echeveste J, Gil P, Sanz ML, Ferrer M . Expression of the basophil-specific antibodies 2D7 and BB1 in patients with cutaneous Mastocytosis. J Investig Allergol Clin Immunol 2013; 23: 392–397.

    CAS  PubMed  Google Scholar 

  51. Noguchi H, Kephart GM, Colby TV, Gleich GJ . Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am J Pathol 1992; 140: 521–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bodger MP, Newton LA . The purification of human basophils: their immunophenotype and cytochemistry. Br J Haematol 1987; 67: 281–284.

    Article  CAS  PubMed  Google Scholar 

  53. Valent P . Immunophenotypic characterization of human basophils and mast cells. Chem Immunol 1995; 61: 34–48.

    CAS  PubMed  Google Scholar 

  54. Bühring HJ, Simmons PJ, Pudney M, Müller R, Jarrossay D, van Agthoven A et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 1999; 94: 2343–2356.

    PubMed  Google Scholar 

  55. Hauswirth AW, Escribano L, Prados A, Nuñez R, Mirkina I, Kneidinger M et al. CD203c is overexpressed on neoplastic mast cells in systemic mastocytosis and is upregulated upon IgE receptor cross-linking. Int J Immunopathol Pharmacol 2008; 21: 797–806.

    Article  CAS  PubMed  Google Scholar 

  56. Foster B, Schwartz LB, Devouassoux G, Metcalfe DD, Prussin C . Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol 2002; 109: 287–293.

    Article  CAS  PubMed  Google Scholar 

  57. Samorapoompichit P, Kiener HP, Schernthaner GH, Jordan JH, Agis H, Wimazal F et al. Detection of tryptase in cytoplasmic granules of basophils in patients with chronic myeloid leukemia and other myeloid neoplasms. Blood 2001; 98: 2580–2583.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec AS et al. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest 1995; 96: 2702–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sperr WR, Jordan JH, Fiegl M, Escribano L, Bellas C, Dirnhofer S et al. Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int Arch Allergy Immunol 2002; 128: 136–141.

    Article  CAS  PubMed  Google Scholar 

  60. Sperr WR, Pfeiffer T, Hoermann G, Herndlhofer S, Sillaber C, Mannhalter C et al. Serum-tryptase at diagnosis: a novel biomarker improving prognostication in Ph(+) CML. Am J Cancer Res 2014; 5: 354–362.

    PubMed  PubMed Central  Google Scholar 

  61. Bodger MP, Morris CM, Kennedy MA, Bowen JA, Hilton JM, Fitzgerald PH . Basophils (Bsp-1+) derive from the leukemic clone in human myeloid leukemias involving the chromosome breakpoint 9q34. Blood 1989; 73: 777–781.

    CAS  PubMed  Google Scholar 

  62. Quelen C, Lippert E, Struski S, Demur C, Soler G, Prade N et al. Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood 2011; 117: 5719–5722.

    Article  CAS  PubMed  Google Scholar 

  63. Lahortiga I, Akin C, Cools J, Wilson TM, Mentens N, Arthur DC et al. Activity of imatinib in systemic mastocytosis with chronic basophilic leukemia and a PRKG2-PDGFRB fusion. Haematologica 2008; 93: 49–56.

    Article  CAS  PubMed  Google Scholar 

  64. Beer PA, Knapp DJ, Miller PH, Kannan N, Sloma I, Heel K et al. Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression. Blood 2015; 125: 504–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takasaki Y, Iwanaga M, Tsukasaki K, Kusano M, Sugahara K, Yamada Y et al. Impact of visceral involvements and blood cell count abnormalities on survival in adult T-cell leukemia/lymphoma (ATLL). Leuk Res 2007; 31: 751–757.

    Article  PubMed  Google Scholar 

  66. Matsushima T, Handa H, Yokohama A, Nagasaki J, Koiso H, Kin Y et al. Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood 2003; 101: 3386–3390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Austrian Science Fund (FWF) Grant #SFB-F4704-B20. DDM was supported by the Division of Intramural Research, NIAID/NIH.

Author contributions

All co-authors contributed by establishing the concept, by participating in essential discussions, by writing parts of the document and by correcting and approving the final version of the manuscript. Consensus statements were based on a 100% agreement (all faculty members agreed) and only those statements were included as consensus in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Valent.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valent, P., Sotlar, K., Blatt, K. et al. Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia 31, 788–797 (2017). https://doi.org/10.1038/leu.2017.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.15

This article is cited by

Search

Quick links