Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

Subjects

Abstract

Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Valent P, Akin C, Sperr WR, Horny HP, Arock M, Lechner K et al. Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol 2003; 122: 695–717.

    Article  PubMed  Google Scholar 

  2. Akin C, Metcalfe DD . Systemic mastocytosis. Annu Rev Med 2004; 55: 419–432.

    Article  CAS  PubMed  Google Scholar 

  3. Arock M, Valent P . Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol 2010; 3: 497–516.

    Article  PubMed  Google Scholar 

  4. Horny HP, Valent P . Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk Res 2001; 25: 543–551.

    Article  CAS  PubMed  Google Scholar 

  5. Horny HP, Sotlar K, Valent P . Mastocytosis: state of the art. Pathobiology 2007; 74: 121–132.

    Article  CAS  PubMed  Google Scholar 

  6. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K, Ding TG et al. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996; 12: 312–314.

    Article  CAS  PubMed  Google Scholar 

  8. Longley BJ, Metcalfe DD, Tharp M, Wang X, Tyrrell L, Lu SZ et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA 1999; 96: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fritsche-Polanz R, Jordan JH, Feix A, Sperr WR, Sunder-Plassmann G, Valent P et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br J Haematol 2001; 113: 357–364.

    Article  CAS  PubMed  Google Scholar 

  10. Féger F, Ribadeau Dumas A, Leriche L, Valent P, Arock M . Kit and c-kit mutations in mastocytosis: a short overview with special reference to novel molecular and diagnostic concepts. Int Arch Allergy Immunol 2002; 127: 110–114.

    Article  PubMed  Google Scholar 

  11. Valent P, Akin C, Sperr WR, Escribano L, Arock M, Horny HP et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res 2003; 27: 635–641.

    Article  CAS  PubMed  Google Scholar 

  12. Escribano L, Akin C, Castells M, Orfao A, Metcalfe DD . Mastocytosis: current concepts in diagnosis and treatment. Ann Hematol 2002; 81: 677–690.

    Article  CAS  PubMed  Google Scholar 

  13. Valent P, Akin C, Escribano L, Födinger M, Hartmann K, Brockow K et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 2007; 37: 435–453.

    Article  CAS  PubMed  Google Scholar 

  14. Brockow K, Jofer C, Behrendt H, Ring J . Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy 2008; 63: 226–232.

    Article  CAS  PubMed  Google Scholar 

  15. González-de-Olano D, Alvarez-Twose I, Vega A, Orfao A, Escribano L . Venom immunotherapy in patients with mastocytosis and hymenoptera venom anaphylaxis. Immunotherapy 2011; 3: 637–651.

    Article  PubMed  Google Scholar 

  16. Carter MC, Robyn JA, Bressler PB, Walker JC, Shapiro GG, Metcalfe DD . Omalizumab for the treatment of unprovoked anaphylaxis in patients with systemic mastocytosis. J Allergy Clin Immunol 2007; 119: 1550–1551.

    Article  CAS  PubMed  Google Scholar 

  17. Valent P, Sperr WR, Schwartz LB, Horny HP . Diagnosis and classification of mast cell proliferative disorders: delineation from immunologic diseases and non-mast cell hematopoietic neoplasms. J Allergy Clin Immunol 2004; 114: 3–11.

    Article  CAS  PubMed  Google Scholar 

  18. Tefferi A, Verstovsek S, Pardanani A . How we diagnose and treat WHO-defined systemic mastocytosis in adults. Haematologica 2008; 93: 6–9.

    Article  PubMed  Google Scholar 

  19. Valent P, Sperr WR, Akin C . How I treat patients with advanced systemic mastocytosis. Blood 2010; 116: 5812–5817.

    Article  CAS  PubMed  Google Scholar 

  20. Gotlib J, Berubé C, Growney JD, Chen CC, George TI, Williams C et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 2005; 106: 2865–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Böhm A et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    Article  CAS  PubMed  Google Scholar 

  22. Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006; 108: 286–291.

    Article  CAS  PubMed  Google Scholar 

  23. Gleixner KV, Mayerhofer M, Sonneck K, Gruze A, Samorapoompichit P, Baumgartner C et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 2007; 92: 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  24. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O et al. KIT inhibitor midostaurin in patients with advanced systemic mastocytosis: results of a planned interim analysis of the global CPKC412D2201 trial. Blood 2012; 120: 799.

    Google Scholar 

  25. Ustun C, DeRemer DL, Akin C . Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 2011; 35: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  26. Akin C, Brockow K, D'Ambrosio C, Kirshenbaum AS, Ma Y, Longley BJ et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol 2003; 31: 686–692.

    Article  CAS  PubMed  Google Scholar 

  27. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A et al. PKC412 - a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des 2000; 15: 17–28.

    CAS  PubMed  Google Scholar 

  28. Growney JD, Clark JJ, Adelsperger J, Stone R, Fabbro D, Griffin JD, Gilliland DG . Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. Blood 2005; 106: 721–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26: 127–132.

    Article  CAS  PubMed  Google Scholar 

  30. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O et al. Durable responses and improved quality of life with midostaurin (PKC412) in advanced systemic mastocytosis (SM): updated stage 1 results of the global D2201 trial. Blood 2013; 122: 106.

    Article  Google Scholar 

  31. Kneidinger M, Schmidt U, Rix U, Gleixner KV, Vales A, Baumgartner C et al. The effects of dasatinib on IgE receptor-dependent activation and histamine release in human basophils. Blood 2008; 111: 3097–3107.

    Article  CAS  PubMed  Google Scholar 

  32. Krauth MT, Mirkina I, Herrmann H, Baumgartner C, Kneidinger M, Valent P . Midostaurin (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin Exp Allergy 2009; 39: 1711–1720.

    Article  CAS  PubMed  Google Scholar 

  33. Propper DJ, McDonald AC, Man A, Thavasu P, Balkwill F, Braybrooke JP et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J. Clin Oncol 2001; 19: 1485–1492.

    Article  CAS  Google Scholar 

  34. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  35. Levis M, Brown P, Smith BD, Stine A, Pham R, Stone R et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood 2006; 108: 3477–3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dutreix C, Munarini F, Lorenzo S, Roesel J, Wang Y . Investigation into CYP3A4-mediated drug-drug interactions on midostaurin in healthy volunteers. Cancer Chemother Pharmacol 2013; 72: 1223–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Yin OQ, Graf P, Kisicki JC, Schran H . Dose- and time-dependent pharmacokinetics of midostaurin in patients with diabetes mellitus. J Clin Pharmacol 2008; 48: 763–775.

    Article  CAS  PubMed  Google Scholar 

  38. Valent P, Ashman LK, Hinterberger W, Eckersberger F, Majdic O, Lechner K et al. Mast cell typing: demonstration of a distinct hematopoietic cell type and evidence for immunophenotypic relationship to mononuclear phagocytes. Blood 1989; 73: 1778–1785.

    CAS  PubMed  Google Scholar 

  39. Peter B, Cerny-Reiterer S, Hadzijusufovic E, Schuch K, Stefanzl G, Eisenwort G et al. The pan-Bcl-2 blocker obatoclax promotes the expression of Puma, Noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells. J Leukoc Biol 2014; 95: 95–104.

    Article  PubMed  Google Scholar 

  40. Butterfield JH, Weiler D, Dewald G, Gleich GJ . Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 1988; 12: 345–355.

    Article  CAS  PubMed  Google Scholar 

  41. Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  PubMed  Google Scholar 

  42. Hantschel O, Rix U, Schmidt U, Bürckstümmer T, Kneidinger M, Schütze G et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007; 104: 13283–13288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernbach NV, Planyavsky M, Müller A, Breitwieser FP, Colinge J, Rix U et al. Acid elution and one-dimensional shotgun analysis on an Orbitrap mass spectrometer: an application to drug affinity chromatography. J Proteome Res 2009; 8: 4753–4765.

    Article  CAS  PubMed  Google Scholar 

  44. Bennett KL, Funk M, Tschernutter M, Breitwieser FP, Planyavsky M, Ubaida Mohien C et al. Proteomic analysis of human cataract aqueous humour: comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens. J Proteomics 2011; 74: 151–166.

    Article  CAS  PubMed  Google Scholar 

  45. Hoermann G, Cerny-Reiterer S, Perné A, Klauser M, Hoetzenecker K, Klein K et al. Identification of oncostatin M as a STAT5-dependent mediator of bone marrow remodeling in KIT D816V-positive systemic mastocytosis. Am J Pathol 2011; 178: 2344–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Böhm A, Sonneck K, Gleixner KV, Schuch K, Pickl WF, Blatt K et al. In vitro and in vivo growth-inhibitory effects of cladribine on neoplastic mast cells exhibiting the imatinib-resistant KIT mutation D816V. Exp Hematol 2010; 38: 744–755.

    Article  PubMed  Google Scholar 

  47. Voisset E, Lopez S, Dubreuil P, De Sepulveda P . The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood 2007; 110: 2593–2599.

    Article  CAS  PubMed  Google Scholar 

  48. Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, Van 't Wout JW, Verhoef G, Gerrits WB et al. Cladribine therapy for systemic mastocytosis. Blood 2003; 102: 4270–4276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Austrian Science Fund (FWF): F 4704-B20, F 4711-B20, F 4611-B19, and P 21173-B13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Valent.

Ethics declarations

Competing interests

PV is a consultant in a global midostaurin trial sponsored by Novartis and received grant support and honoraria from Novartis. AR is a consultant in a global midostaurin trial sponsored by Novartis and received honoraria from Novartis. CD, JR and PWM are employed by Novartis Pharma AG. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, B., Winter, G., Blatt, K. et al. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia 30, 464–472 (2016). https://doi.org/10.1038/leu.2015.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.242

Search

Quick links