Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia

Abstract

Despite risk-adapted treatment, survival of children with relapse of acute lymphoblastic leukemia (ALL) remains poor compared with that of patients with initial diagnosis of ALL. Leukemia-associated genetic alterations may provide novel prognostic factors to refine present relapse treatment strategies. Therefore, we investigated the clinical relevance of 13 recurrent genetic alterations in 204 children treated uniformly for relapsed B-cell precursor ALL according to the ALL-REZ BFM 2002 protocol. The most common alterations were deletions of CDKN2A/2B, IKZF1, PAX5, ETV6, fusion of ETV6-RUNX1 and deletions and/or mutations of TP53. Multivariate analysis identified IKZF1 deletion and TP53 alteration as independent predictors of inferior outcome (P=0.002 and P=0.001). Next, we investigated how both alterations can improve the established risk stratification in relapsed ALL. Intermediate-risk relapse patients with low minimal residual disease are currently considered to have a good prognosis. In this group, deletion of IKZF1 and alteration of TP53 identify patients with significantly inferior outcome (P<0.001). In high-risk relapse patients, deletion of IKZF1 is strongly predictive of a second relapse after stem cell transplantation (P<0.001). We conclude that IKZF1 and TP53 represent relevant prognostic factors that should be considered in future risk assessment of children with relapsed ALL to indicate treatment intensification or intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  PubMed  Google Scholar 

  2. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol 2010; 28: 648–654.

    Article  PubMed  Google Scholar 

  3. van den Berg H, de Groot-Kruseman HA, Damen-Korbijn CM, de Bont ES, Schouten-van Meeteren AY, Hoogerbrugge PM . Outcome after first relapse in children with acute lymphoblastic leukemia: a report based on the Dutch Childhood Oncology Group (DCOG) relapse all 98 protocol. Pediatr Blood Cancer 2011; 57: 210–216.

    Article  CAS  PubMed  Google Scholar 

  4. Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010; 28: 2339–2347.

    Article  CAS  PubMed  Google Scholar 

  5. Einsiedel HG, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 2005; 23: 7942–7950.

    Article  PubMed  Google Scholar 

  6. Gaynon PS, Qu RP, Chappell RJ, Willoughby ML, Tubergen DG, Steinherz PG et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse—the Children’s Cancer Group Experience. Cancer 1998; 82: 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2008; 22: 2142–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241.

    CAS  PubMed  Google Scholar 

  9. Kamps WA, Bokkerink JP, Hakvoort-Cammel FG, Veerman AJ, Weening RS, van Wering ER et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia 2002; 16: 1099–1111.

    Article  CAS  PubMed  Google Scholar 

  10. Kamps WA, van der Pal-de Bruin KM, Veerman AJ, Fiocco M, Bierings M, Pieters R . Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia 2009; 24: 309–319.

    Article  PubMed  Google Scholar 

  11. Moricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dordelmann M et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008; 111: 4477–4489.

    Article  PubMed  Google Scholar 

  12. Moricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24: 265–284.

    Article  CAS  PubMed  Google Scholar 

  13. Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2009; 24: 371–382.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pui CH, Sandlund JT, Pei D, Campana D, Rivera GK, Ribeiro RC et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood 2004; 104: 2690–2696.

    Article  CAS  PubMed  Google Scholar 

  15. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  16. Strefford JC, Worley H, Barber K, Wright S, Stewart AR, Robinson HM et al. Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization. Oncogene 2007; 26: 4306–4318.

    Article  CAS  PubMed  Google Scholar 

  17. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG, van Leeuwen FN et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 2007; 21: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  18. Kawamata N, Ogawa S, Zimmermann M, Kato M, Sanada M, Hemminki K et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 2008; 111: 776–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 2009; 114: 2688–2698.

    Article  CAS  PubMed  Google Scholar 

  20. Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 2009; 41: 1243–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010; 115: 5312–5321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 2010; 115: 5393–5397.

    Article  CAS  PubMed  Google Scholar 

  23. Kuiper RP, Waanders E, van der Velden VH, van Reijmersdal SV, Venkatachalam R, Scheijen B et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  24. Mi JQ, Wang X, Yao Y, Lu HJ, Jiang XX, Zhou JF et al. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia 2012; 2: 23.

    Google Scholar 

  25. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 7: 7.

    Google Scholar 

  26. Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011; 25: 254–258.

    Article  CAS  PubMed  Google Scholar 

  27. Yang YL, Hung CC, Chen JS, Lin KH, Jou ST, Hsiao CC et al. IKZF1 deletions predict a poor prognosis in children with B-cell progenitor acute lymphoblastic leukemia: a multicenter analysis in Taiwan. Cancer Sci 2011; 102: 1874–1881.

    Article  CAS  PubMed  Google Scholar 

  28. Beyermann B, Adams HP, Henze G . Philadelphia chromosome in relapsed childhood acute lymphoblastic leukemia: a matched-pair analysis. Berlin-Frankfurt-Munster Study Group. J Clin Oncol 1997; 15: 2231–2237.

    Article  CAS  PubMed  Google Scholar 

  29. Seeger K, Adams HP, Buchwald D, Beyermann B, Kremens B, Niemeyer C et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood 1998; 91: 1716–1722.

    CAS  PubMed  Google Scholar 

  30. Seeger K, von Stackelberg A, Taube T, Buchwald D, Korner G, Suttorp M et al. Relapse of TEL-AML1—positive acute lymphoblastic leukemia in childhood: a matched-pair analysis. J Clin Oncol 2001; 19: 3188–3193.

    Article  CAS  PubMed  Google Scholar 

  31. Graf Einsiedel H, Taube T, Hartmann R, Wellmann S, Seifert G, Henze G et al. Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia. Blood 2002; 99: 4629–4631.

    Article  PubMed  Google Scholar 

  32. Hof J, Krentz S, van Schewick C, Korner G, Shalapour S, Rhein P et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 2011; 29: 3185–3193.

    Article  PubMed  Google Scholar 

  33. Schwab CJ, Jones LR, Morrison H, Ryan SL, Yigittop H, Schouten JP et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010; 49: 1104–1113.

    Article  CAS  PubMed  Google Scholar 

  34. Scrucca L, Santucci A, Aversa F . Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant 2007; 40: 381–387.

    Article  CAS  PubMed  Google Scholar 

  35. Meijerink JP . Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2010; 23: 307–318.

    Article  CAS  PubMed  Google Scholar 

  36. Chiaretti S, Foa R . T-cell acute lymphoblastic leukemia. Haematologica 2009; 94: 160–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang JJ, Bhojwani D, Yang W, Cai X, Stocco G, Crews K et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008; 112: 4178–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ensor HM, Schwab C, Russell LJ, Richards SM, Morrison H, Masic D et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood 2011; 117: 2129–2136.

    Article  CAS  PubMed  Google Scholar 

  40. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010; 115: 5312–5321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aricò M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010; 28: 4755–4761.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 2010; 11: 429–438.

    Article  CAS  PubMed  Google Scholar 

  43. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  44. Mirebeau D, Acquaviva C, Suciu S, Bertin R, Dastugue N, Robert A et al. The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951. Haematologica 2006; 91: 881–885.

    CAS  PubMed  Google Scholar 

  45. Kim M, Choi JE, She CJ, Hwang SM, Shin HY, Ahn HS et al. PAX5 deletion is common and concurrently occurs with CDKN2A deletion in B-lineage acute lymphoblastic leukemia. Blood Cells Mol Dis 2011; 47: 62–66.

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez Y, Coll MD, Ortega JJ, Bastida P, Dastugue N, Robert A et al. Genetic abnormalities associated with the t(12;21) and their impact in the outcome of 56 patients with B-precursor acute lymphoblastic leukemia. Cancer Genet Cytogenet 2005; 162: 21–29.

    Article  CAS  PubMed  Google Scholar 

  47. Peter A, Heiden T, Taube T, Korner G, Seeger K . Interphase FISH on TEL/AML1 positive acute lymphoblastic leukemia relapses - analysis of clinical relevance of additional TEL and AML1 copy number changes. Eur J Haematol 2009; 6: 6.

    Google Scholar 

  48. Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 2009; 113: 100–107.

    Article  CAS  PubMed  Google Scholar 

  49. Attarbaschi A, Mann G, Konig M, Dworzak MN, Trebo MM, Muhlegger N et al. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia 2004; 18: 1611–1616.

    Article  CAS  PubMed  Google Scholar 

  50. Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009; 27: 377–384.

    Article  PubMed  Google Scholar 

  51. Kirschner-Schwabe R, Lottaz C, Todling J, Rhein P, Karawajew L, Eckert C et al. Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia. Clin Cancer Res 2006; 12: 4553–4561.

    Article  CAS  PubMed  Google Scholar 

  52. Bhojwani D, Kang H, Moskowitz NP, Min DJ, Lee H, Potter JW et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2006; 108: 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 2010; 115: 1006–1017.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the German José Carreras Leukemia Foundation (Grants No. DJCLS R 08/17 to RKS and CE, and DJCLS A 09/01 to AvS), the German National Genome Research Network (Grants No. 01GS0870 to RKS and CH, and 01GS0882 to CL), the German Foundation for Childhood Cancer (Grants No. DKS 2003.08 and 2007.02 to AvS and GH, and DKS 2003.03 to CE and GH) and KinderLeben Berlin, incorporated society, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kirschner-Schwabe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krentz, S., Hof, J., Mendioroz, A. et al. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 27, 295–304 (2013). https://doi.org/10.1038/leu.2012.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.155

Keywords

This article is cited by

Search

Quick links