Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Stem Cell Homing and Mobilisation

The vascular niche: home for normal and malignant hematopoietic stem cells

Abstract

Hematopoietic stem cells (HSCs) are uniquely capable of self-renewal and provision of all of the mature elements of the blood and immune system throughout the lifetime of an individual. HSC self-renewal is regulated by both intrinsic mechanisms and extrinsic signals mediated via specialized microenvironments or ‘niches’ wherein HSCs reside. HSCs have been shown to reside in close association with bone marrow (BM) osteoblasts in the endosteal niche and also in proximity to BM sinusoidal vessels. An unresolved question surrounds whether the endosteal and vascular niches provide synchronous or redundant regulation of HSC fate or whether these niches provide wholly unique regulatory functions. Furthermore, while some aspects of the mechanisms through which osteoblasts regulate HSC fate have been defined, the mechanisms through which the vascular niche regulates HSC fate remain obscure. Here, we summarize the anatomic and functional basis supporting the concept of an HSC vascular niche as well as the precise function of endothelial cells, perivascular cells and stromal cells within the niche in regulating HSC fate. Lastly, we will highlight the role of the vascular niche in regulating leukemic stem cell fate in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zon LI . Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008; 453: 306–313.

    Article  CAS  PubMed  Google Scholar 

  2. Orkin SH, Zon LI . SnapShot: hematopoiesis. Cell 2008; 132: 712.

    Article  CAS  PubMed  Google Scholar 

  3. Kiel MJ, Morrison SJ . Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290–301.

    Article  CAS  PubMed  Google Scholar 

  4. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  5. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol 2007; 25: 238–243.

    Article  CAS  PubMed  Google Scholar 

  6. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  7. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  8. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  9. Fliedner TM, Bond VP, Cronkite EP . Structural, cytologic and autoradiographic (H3-thymidine) changes in the bone marrow following total body irradiation. Am J Pathol 1961; 38: 599–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong JK . Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978; 199: 1443–1445.

    Article  CAS  PubMed  Google Scholar 

  11. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  12. Oh IH, Kwon KR . Concise review: multiple niches for hematopoietic stem cell regulations. Stem Cells 2010; 28: 1243–1249.

    CAS  PubMed  Google Scholar 

  13. Knospe WH, Gregory SA, Husseini SG, Fried W, Trobaugh Jr FE . Origin and recovery of colony-forming units in locally curetted bone marrow of mice. Blood 1972; 39: 331–340.

    CAS  PubMed  Google Scholar 

  14. McClugage Jr SG, McCuskey RS, Meineke HA . Microscopy of living bone marrow in situ II. Influence of the microenvironment on hemopoiesis. Blood 1971; 38: 96–107.

    PubMed  Google Scholar 

  15. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    Article  CAS  PubMed  Google Scholar 

  16. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ . Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460: 259–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 2007; 109: 2365–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taichman RS, Emerson SG . Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 1994; 179: 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007; 109: 3706–3712.

    Article  CAS  PubMed  Google Scholar 

  23. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  PubMed  Google Scholar 

  24. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  25. Ballen KK, Shpall EJ, Avigan D, Yeap BY, Fisher DC, McDermott K et al. Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant 2007; 13: 838–843.

    Article  CAS  PubMed  Google Scholar 

  26. Kiel MJ, Acar M, Radice GL, Morrison SJ . Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 2009; 4: 170–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201: 1781–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457: 92–96.

    Article  CAS  PubMed  Google Scholar 

  29. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89: 981–990.

    Article  CAS  PubMed  Google Scholar 

  30. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G . A common precursor for hematopoietic and endothelial cells. Development 1998; 125: 725–732.

    CAS  PubMed  Google Scholar 

  31. Godin I, Dieterlen-Lievre F, Cumano A . Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 1995; 92: 773–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906.

    CAS  PubMed  Google Scholar 

  33. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 2008; 3: 625–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464: 108–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eilken HM, Nishikawa S, Schroeder T . Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 2009; 457: 896–900.

    Article  CAS  PubMed  Google Scholar 

  36. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shirota T, Tavassoli M . Alterations of bone marrow sinus endothelium induced by ionizing irradiation: implications in the homing of intravenously transplanted marrow cells. Blood Cells 1992; 18: 197–214.

    CAS  PubMed  Google Scholar 

  38. Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 1994; 84: 10–19.

    CAS  PubMed  Google Scholar 

  39. Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 1995; 86: 3353–3363.

    CAS  PubMed  Google Scholar 

  40. Davis TA, Robinson DH, Lee KP, Kessler SW . Porcine brain microvascular endothelial cells support the in vitro expansion of human primitive hematopoietic bone marrow progenitor cells with a high replating potential: requirement for cell-to-cell interactions and colony-stimulating factors. Blood 1995; 85: 1751–1761.

    CAS  PubMed  Google Scholar 

  41. Brandt J, Bartholemew A, Fortman J, Nelson M, Bruno E, Chen L et al. Ex vivo expansion of autologous bone marrow CD34+ cells with porcine microvascular endothelial cells results in a graft capaple of rescuing lethally irradiated baboons. Blood 1999; 94: 106–113.

    CAS  PubMed  Google Scholar 

  42. Rosler E, Brandt J, Chute J, Hoffman R . An in vivo competitive repopulating assay for various sources of hematopoietic stem cells. Blood 2000; 96: 3414–3421.

    CAS  PubMed  Google Scholar 

  43. Chute JP, Saini AA, Chute DJ, Wells MR, Clark WB, Harlan DM et al. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 2002; 100: 4433–4439.

    Article  CAS  PubMed  Google Scholar 

  44. Chute JP, Muramoto GG, Fung J, Oxford C . Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38- cells and SCID-repopulating cells. Blood 2005; 105: 576–583.

    Article  CAS  PubMed  Google Scholar 

  45. Chute JP, Fung J, Muramoto G, Erwin R . Ex vivo culture rescues hematopoietic stem cells with long-term repopulating capacity following harvest from lethally irradiated mice. Exp Hematol 2004; 32: 308–317.

    Article  PubMed  Google Scholar 

  46. Muramoto GG, Chen B, Cui X, Chao NJ, Chute JP . Vascular endothelial cells produce soluble factors that mediate the recovery of human hematopoietic stem cells after radiation injury. Biol Blood Marrow Transplant 2006; 12: 530–540.

    Article  PubMed  Google Scholar 

  47. Chute JP, Muramoto GG, Dressman HK, Wolfe G, Chao NJ, Lin S . Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis. Stem Cells 2006; 24: 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF . Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 2008; 111: 3415–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 2010; 16: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10: 64–71.

    Article  CAS  PubMed  Google Scholar 

  52. Kopp HG, Avecilla ST, Hooper AT, Shmelkov SV, Ramos CA, Zhang F et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 2005; 106: 505–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 2009; 113: 2104–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slayton WB, Li XM, Butler J, Guthrie SM, Jorgensen ML, Wingard JR et al. The role of the donor in the repair of the marrow vascular niche following hematopoietic stem cell transplant. Stem Cells 2007; 25: 2945–2955.

    Article  PubMed  Google Scholar 

  55. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2010; 12: 1046–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. National Cancer Institute. SEER Cancer Statistics Review, 1975–2007. Bethesda, MD. Available from: http://seer.cancer.gov/csr/1975_2007/.

  57. Sipkins DA . Rendering the leukemia cell susceptible to attack. N Engl J Med 2009; 361: 1307–1309.

    Article  CAS  PubMed  Google Scholar 

  58. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  59. Kaplan RN, Rafii S, Lyden D . Preparing the ‘soil’: the premetastatic niche. Cancer Res 2006; 66: 11089–11093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    Article  CAS  PubMed  Google Scholar 

  61. Somervaille TC, Cleary ML . Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006; 10: 257–268.

    Article  CAS  PubMed  Google Scholar 

  62. Mazurier F, Doedens M, Gan OI, Dick JE . Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9: 959–963.

    Article  CAS  PubMed  Google Scholar 

  63. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 2010; 28: 275–280.

    Article  CAS  PubMed  Google Scholar 

  64. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  PubMed  Google Scholar 

  65. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  PubMed  Google Scholar 

  67. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  68. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  69. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  70. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  71. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chute JP . Stem cell homing. Curr Opin Hematol 2006; 13: 399–406.

    Article  PubMed  Google Scholar 

  74. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  75. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  76. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  77. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE . Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550–557.

    Article  CAS  PubMed  Google Scholar 

  78. Spoo AC, Lubbert M, Wierda WG, Burger JA . CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 2007; 109: 786–791.

    Article  CAS  PubMed  Google Scholar 

  79. Reuss-Borst MA, Klein G, Waller HD, Muller CA . Differential expression of adhesion molecules in acute leukemia. Leukemia 1995; 9: 869–874.

    CAS  PubMed  Google Scholar 

  80. Colmone A, Sipkins DA . Beyond angiogenesis: the role of endothelium in the bone marrow vascular niche. Transl Res 2008; 151: 1–9.

    Article  CAS  PubMed  Google Scholar 

  81. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD 3100. Blood 2009; 113: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vila L, Thomas X, Campos L, Sabido O, Archimbaud E . Expression of VLA molecules on acute leukemia cells: relationship with disease characteristics. Exp Hematol 1995; 23: 514–518.

    CAS  PubMed  Google Scholar 

  84. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  85. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  86. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  87. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009; 5: 31–42.

    Article  CAS  PubMed  Google Scholar 

  88. Robertson S, Kennedy M, Keller G . Hematopoietic commitment during embryogenesis. Ann NY Acad Sci 1999; 872: 9–15; discussion 15–16.

    Article  CAS  PubMed  Google Scholar 

  89. Ziegler BL, Valtieri M, Porada GA, De Maria R, Muller R, Masella B et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999; 285: 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  90. Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y . Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995; 55: 5687–5692.

    CAS  PubMed  Google Scholar 

  91. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  92. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  94. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Folkman J . Angiogenesis-dependent diseases. Semin Oncol 2001; 28: 536–542.

    Article  CAS  PubMed  Google Scholar 

  96. Veiga JP, Costa LF, Sallan SE, Nadler LM, Cardoso AA . Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp Hematol 2006; 34: 610–621.

    Article  CAS  PubMed  Google Scholar 

  97. Hatfield K, Oyan AM, Ersvaer E, Kalland KH, Lassalle P, Gjertsen BT et al. Primary human acute myeloid leukaemia cells increase the proliferation of microvascular endothelial cells through the release of soluble mediators. Br J Haematol 2009; 144: 53–68.

    Article  CAS  PubMed  Google Scholar 

  98. Seandel M, Butler JM, Kobayashi H, Hooper AT, White IA, Zhang F et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc Natl Acad Sci USA 2008; 105: 19288–19293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burger JA, Kipps TJ . Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 2002; 43: 461–466.

    Article  CAS  PubMed  Google Scholar 

  100. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  101. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  102. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jazwiec B, Solanilla A, Grosset C, Mahon F, Dupouy M, Pigeonnier-Lagarde V et al. Endothelial cell support of hematopoiesis is differentially altered by IL-1 and glucocorticoids. Leukemia 1998; 12: 1210–1220.

    Article  CAS  PubMed  Google Scholar 

  105. Kohler T, Plettig R, Wetzstein W, Schaffer B, Ordemann R, Nagels H et al. Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem Cells 1999; 17: 19–24.

    Article  CAS  PubMed  Google Scholar 

  106. Yildirim S, Boehmler A, Kanz L, Mohle R . Expansion of cord blood CD34+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplant 2005; 36: 71–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr Joel Ross for assistance with figure design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Chute.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doan, P., Chute, J. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26, 54–62 (2012). https://doi.org/10.1038/leu.2011.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.236

Keywords

This article is cited by

Search

Quick links