Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Stem Cell Homing and Mobilisation

Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4

Abstract

Successful hematopoietic stem cell transplant requires the infusion of a sufficient number of hematopoietic stem/progenitor cells (HSPCs) that are capable of homing to the bone marrow cavity and regenerating durable trilineage hematopoiesis in a timely manner. Stem cells harvested from peripheral blood are the most commonly used graft source in HSCT. Although granulocyte colony-stimulating factor (G-CSF) is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients. Both the chemokine receptor CXCR4 and the integrin α4β1 (very late antigen 4 (VLA-4)) have important roles in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of CXCR4 or VLA-4 with their ligands results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the development of small-molecule CXCR4 and VLA-4 inhibitors and how they may improve the utility and convenience of peripheral blood stem cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Xie T, Spradling AC . A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290: 328–330.

    Article  CAS  PubMed  Google Scholar 

  2. Kiger AA, White-Cooper H, Fuller MT . Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 2000; 407: 750–754.

    Article  CAS  PubMed  Google Scholar 

  3. Adams GB, Scadden DT . The hematopoietic stem cell in its place. Nat Immunol 2006; 7: 333–337.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  PubMed  Google Scholar 

  5. Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.

    Article  CAS  PubMed  Google Scholar 

  6. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  7. Smith-Berdan S, Nguyen A, Hassanein D, Zimmer M, Ugarte F, Ciriza J et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell 2011; 8: 72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiel MJ, Morrison SJ . Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290–301.

    Article  CAS  PubMed  Google Scholar 

  9. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  10. Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol 1995; 13: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  11. Hartmann O, Le Corroller AG, Blaise D, Michon J, Philip I, Norol F et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs. A randomized, controlled trial. Ann Intern Med 1997; 126: 600–607.

    Article  CAS  PubMed  Google Scholar 

  12. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  13. Bensinger W, DiPersio JF, McCarty JM . Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43: 181–195.

    Article  CAS  PubMed  Google Scholar 

  14. Kessinger A, Armitage JO, Landmark JD, Weisenburger DD . Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol 1986; 14: 192–196.

    CAS  PubMed  Google Scholar 

  15. Korbling M, Dorken B, Ho AD, Pezzutto A, Hunstein W, Fliedner TM . Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt's lymphoma. Blood 1986; 67: 529–532.

    CAS  PubMed  Google Scholar 

  16. Dreger P, Kloss M, Petersen B, Haferlach T, Loffler H, Loeffler M et al. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 1995; 86: 3970–3978.

    CAS  PubMed  Google Scholar 

  17. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008; 14: 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  18. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  19. Haas R, Mohle R, Fruhauf S, Goldschmidt H, Witt B, Flentje M et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1994; 83: 3787–3794.

    CAS  PubMed  Google Scholar 

  20. Sugrue MW, Williams K, Pollock BH, Khan S, Peracha S, Wingard JR et al. Characterization and outcome of ‘hard to mobilize’ lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2000; 39: 509–519.

    Article  CAS  PubMed  Google Scholar 

  21. Anderlini P, Przepiorka D, Seong D, Miller P, Sundberg J, Lichtiger B et al. Clinical toxicity and laboratory effects of granulocyte-colony-stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion 1996; 36: 590–595.

    Article  CAS  PubMed  Google Scholar 

  22. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 1997; 3: 45–49.

    CAS  PubMed  Google Scholar 

  23. Falzetti F, Aversa F, Minelli O, Tabilio A . Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet 1999; 353: 555.

    CAS  PubMed  Google Scholar 

  24. Fortanier C, Kuentz M, Sutton L, Milpied N, Michalet M, Macquart-Moulin G et al. Healthy sibling donor anxiety and pain during bone marrow or peripheral blood stem cell harvesting for allogeneic transplantation: results of a randomised study. Bone Marrow Transplant 2002; 29: 145–149.

    Article  CAS  PubMed  Google Scholar 

  25. Goterris R, Hernandez-Boluda JC, Teruel A, Gomez C, Lis MJ, Terol MJ et al. Impact of different strategies of second-line stem cell harvest on the outcome of autologous transplantation in poor peripheral blood stem cell mobilizers. Bone Marrow Transplant 2005; 36: 847–853.

    Article  CAS  PubMed  Google Scholar 

  26. Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 2005; 6: 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  27. Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 1999; 106: 905–911.

    Article  CAS  PubMed  Google Scholar 

  28. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006; 38: 497–508.

    Article  CAS  PubMed  Google Scholar 

  29. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106: 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  31. Watt SM, Forde SP . The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 2008; 94: 18–32.

    CAS  PubMed  Google Scholar 

  32. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  33. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  34. Doranz BJ, Orsini MJ, Turner JD, Hoffman TL, Berson JF, Hoxie JA et al. Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J Virol 1999; 73: 2752–2761.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Nye KE et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood 2003; 101: 399–406.

    Article  CAS  PubMed  Google Scholar 

  36. Benboubker L, Watier H, Carion A, Georget MT, Desbois I, Colombat P et al. Association between the SDF1-3′A allele and high levels of CD34(+) progenitor cells mobilized into peripheral blood in humans. Br J Haematol 2001; 113: 247–250.

    Article  CAS  PubMed  Google Scholar 

  37. Bogunia-Kubik K, Gieryng A, Dlubek D, Lange A . The CXCL12-3′A allele is associated with a higher mobilization yield of CD34 progenitors to the peripheral blood of healthy donors for allogeneic transplantation. Bone Marrow Transplant 2009; 44: 273–278.

    Article  CAS  PubMed  Google Scholar 

  38. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  40. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci USA 2007; 104: 14759–14764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132: 463–473.

    Article  CAS  PubMed  Google Scholar 

  42. Hartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, Spiegel A et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 2008; 84: 1130–1140.

    Article  CAS  PubMed  Google Scholar 

  43. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 2010; 5: e9175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B . Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 1994; 269: 232–237.

    CAS  PubMed  Google Scholar 

  45. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382: 829–833.

    Article  CAS  PubMed  Google Scholar 

  46. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–835.

    Article  CAS  PubMed  Google Scholar 

  47. Feng Y, Broder CC, Kennedy PE, Berger EA . HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872–877.

    Article  CAS  PubMed  Google Scholar 

  48. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB . The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63: 1256–1272.

    Article  CAS  PubMed  Google Scholar 

  49. Busillo JM, Benovic JL . Regulation of CXCR4 signaling. Biochim Biophys Acta 2007; 1768: 952–963.

    Article  CAS  PubMed  Google Scholar 

  50. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 2004; 35: 233–245.

    Article  CAS  PubMed  Google Scholar 

  51. Dubeykovskaya Z, Dubeykovskiy A, Solal-Cohen J, Wang TC . Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem 2009; 284: 3650–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 2007; 13: 587–596.

    Article  CAS  PubMed  Google Scholar 

  53. Fukuda S, Broxmeyer HE, Pelus LM . Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 2005; 105: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  54. Dutt P, Wang JF, Groopman JE . Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol 1998; 161: 3652–3658.

    CAS  PubMed  Google Scholar 

  55. Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, Hoxie J et al. Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 1999; 29: 1823–1831.

    Article  CAS  PubMed  Google Scholar 

  56. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 2003; 112: 160–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  PubMed  Google Scholar 

  60. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    Article  CAS  PubMed  Google Scholar 

  61. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  PubMed  Google Scholar 

  62. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    Article  CAS  PubMed  Google Scholar 

  64. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood 2006; 107: 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  65. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 1999; 96: 5663–5667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nie Y, Han YC, Zou YR . CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205: 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105: 2449–2457.

    Article  CAS  PubMed  Google Scholar 

  68. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004; 104: 444–452.

    Article  CAS  PubMed  Google Scholar 

  69. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003; 34: 70–74.

    Article  CAS  PubMed  Google Scholar 

  70. Kawai T, Choi U, Whiting-Theobald NL, Linton GF, Brenner S, Sechler JM et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005; 33: 460–468.

    Article  CAS  PubMed  Google Scholar 

  71. Balabanian K, Levoye A, Klemm L, Lagane B, Hermine O, Harriague J et al. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 2008; 118: 1074–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorlin RJ, Gelb B, Diaz GA, Lofsness KG, Pittelkow MR, Fenyk Jr JR . WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 2000; 91: 368–376.

    Article  CAS  PubMed  Google Scholar 

  73. Gulino AV . WHIM syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol 2003; 3: 443–450.

    Article  CAS  PubMed  Google Scholar 

  74. Pelus LM . Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol 2008; 15: 285–292.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nervi B, Link DC, DiPersio JF . Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 2006; 99: 690–705.

    Article  CAS  PubMed  Google Scholar 

  76. De Clercq E . The bicyclam AMD3100 story. Nat Rev Drug Discov 2003; 2: 581–587.

    Article  CAS  PubMed  Google Scholar 

  77. Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4: 72–77.

    Article  CAS  PubMed  Google Scholar 

  78. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lack NA, Green B, Dale DC, Calandra GB, Lee H, MacFarland RT et al. A pharmacokinetic-pharmacodynamic model for the mobilization of CD34+ hematopoietic progenitor cells by AMD3100. Clin Pharmacol Ther 2005; 77: 427–436.

    Article  CAS  PubMed  Google Scholar 

  80. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    Article  CAS  PubMed  Google Scholar 

  81. Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra G et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 2005; 45: 295–300.

    Article  CAS  PubMed  Google Scholar 

  82. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  83. Flomenberg N, Devine SM, Dipersio JF, Liesveld JL, McCarty JM, Rowley SD et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005; 106: 1867–1874.

    Article  CAS  PubMed  Google Scholar 

  84. Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K et al. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin's lymphoma, Hodgkin's disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008; 41: 331–338.

    Article  CAS  PubMed  Google Scholar 

  85. Cashen A, Lopez S, Gao F, Calandra G, MacFarland R, Badel K et al. A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant 2008; 14: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  86. Fowler CJ, Dunn A, Hayes-Lattin B, Hansen K, Hansen L, Lanier K et al. Rescue from failed growth factor and/or chemotherapy HSC mobilization with G-CSF and plerixafor (AMD3100): an institutional experience. Bone Marrow Transplant 2009; 43: 909–917.

    Article  CAS  PubMed  Google Scholar 

  87. Stiff P, Micallef I, McCarthy P, Magalhaes-Silverman M, Weisdorf D, Territo M et al. Treatment with plerixafor in non-Hodgkin's lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: implications for the heavily pretreated patient. Biol Blood Marrow Transplant 2009; 15: 249–256.

    Article  CAS  PubMed  Google Scholar 

  88. Stewart DA, Smith C, MacFarland R, Calandra G . Pharmacokinetics and pharmacodynamics of plerixafor in patients with non-Hodgkin lymphoma and multiple myeloma. Biol Blood Marrow Transplant 2009; 15: 39–46.

    Article  CAS  PubMed  Google Scholar 

  89. Dugan MJ, Maziarz RT, Bensinger WI, Nademanee A, Liesveld J, Badel K et al. Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin's lymphoma undergoing stem cell mobilization. Bone Marrow Transplant 2010; 45: 39–47.

    Article  CAS  PubMed  Google Scholar 

  90. Shaughnessy P, Islas-Ohlmayer M, Murphy J, Hougham M, MacPherson J, Winkler K et al. Plerixafor plus G-CSF compared to chemotherapy plus G-CSF for mobilization of autologous CD34+ cells resulted in similar cost but more predictable days of apheresis and less hospitalization. Blood (ASH Annual Meeting Abstracts 2009; 114 (abstract 2277).

  91. DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J Clin Oncol 2009; 27: 4767–4773.

    Article  CAS  PubMed  Google Scholar 

  92. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  93. Micallef IN, Stiff PJ, DiPersio JF, Maziarz RT, McCarty JM, Bridger G et al. Successful stem cell remobilization using plerixafor (mozobil) plus granulocyte colony-stimulating factor in patients with non-Hodgkin lymphoma: results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 2009; 15: 1578–1586.

    Article  CAS  PubMed  Google Scholar 

  94. Devine SM, Vij R, Rettig M, Todt L, McGlauchlen K, Fisher N et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008; 112: 990–998.

    Article  CAS  PubMed  Google Scholar 

  95. Rettig MP, Shannon WD, Ritchey J, Holt M, McFarland K, Lopez S et al. Characterization of human CD34+ hematopoietic stem cells following administration of G-CSF or plerixafor. Blood (ASH Annual Meeting Abstracts 2008; 112 (abstract 3476).

  96. Rettig M, Lopez S, McFarland K, DiPersio JF . Rapid and prolonged mobilization of human CD34+ hematopoietic stem cells following intravenous (IV) administration of plerixafor. Blood (ASH Annual Meeting Abstracts 2010; 116 (abstract 2261).

  97. Rettig M, McFarland K, Ritchey J, Holt M, Deych E, Lopez S et al. Preferential mobilization of CD34+ plasmacytoid dendritic cell precursors by plerixafor. Blood (ASH Annual Meeting Abstracts 2009; 114 (abstract 32).

  98. Manz MG, Miyamoto T, Akashi K, Weissman IL . Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 2002; 99: 11872–11877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weissman IL, Shizuru JA . The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112: 3543–3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rettig MP, Ramirez P, Nervi B, DiPersio JF . CXCR4 and mobilization of hematopoietic precursors. Methods Enzymol 2009; 460: 57–90.

    Article  CAS  PubMed  Google Scholar 

  101. Fruehauf S, Tricot G . Comparison of unmobilized and mobilized graft characteristics and the implications of cell subsets on autologous and allogeneic transplantation outcomes. Biol Blood Marrow Transplant 2010; 16: 1629–1648.

    Article  PubMed  Google Scholar 

  102. Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D . The design, structures and therapeutic potential of protein epitope mimetics. Drug Discov Today 2008; 13: 944–951.

    Article  CAS  PubMed  Google Scholar 

  103. DeMarco SJ, Henze H, Lederer A, Moehle K, Mukherjee R, Romagnoli B et al. Discovery of novel, highly potent and selective beta-hairpin mimetic CXCR4 inhibitors with excellent anti-HIV activity and pharmacokinetic profiles. Bioorg Med Chem 2006; 14: 8396–8404.

    Article  CAS  PubMed  Google Scholar 

  104. Moncunill G, Armand-Ugon M, Clotet-Codina I, Pauls E, Ballana E, Llano A et al. Anti-HIV activity and resistance profile of the CXC chemokine receptor 4 antagonist POL3026. Mol Pharmacol 2008; 73: 1264–1273.

    Article  CAS  PubMed  Google Scholar 

  105. Schmitt S, Weinhold N, Dembowsky K, Neben K, Witzens-Harig M, Braun M et al. First results of a phase-II study with the new CXCR4 antagonist POL6326 to mobilize hematopoietic stem cells (HSC) in multiple myeloma (MM). Blood (ASH Annual Meeting Abstracts 2010; 116 (abstract 824).

  106. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ . Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 2003; 17: 1294–1300.

    Article  CAS  PubMed  Google Scholar 

  107. Abraham M, Beider K, Wald H, Weiss ID, Zipori D, Galun E et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 2009; 23: 1378–1388.

    Article  CAS  PubMed  Google Scholar 

  108. Abraham M, Biyder K, Begin M, Wald H, Weiss ID, Galun E et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells 2007; 25: 2158–2166.

    Article  CAS  PubMed  Google Scholar 

  109. Trent JO, Wang ZX, Murray JL, Shao W, Tamamura H, Fujii N et al. Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J Biol Chem 2003; 278: 47136–47144.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 2002; 277: 24515–24521.

    Article  CAS  PubMed  Google Scholar 

  111. Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E . Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186: 1383–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beider K, Begin M, Abraham M, Wald H, Weiss I, Wald O et al. Anti-leukemia and multiple myeloma selective activity of CXCR4 antagonist 4F-benzoyl-TN14003 involves apoptotic death pathway. Blood (ASH Annual Meeting Abstracts 2009; 114 (abstract 3857).

  113. Nagler A, Shimoni A, Avivi I, Rowe JM, Beider K, Hardan I et al. BKT140 is a novel CXCR4 antagonist with stem cell mobilization and antimyeloma effects: an open-label first human trial in patients with multiple myeloma undergoing stem cell mobilization for autologous transplantation. Blood (ASH Annual Meeting Abstracts) 2010; 116 (abstract 2260).

  114. Sayyed SG, Hagele H, Kulkarni OP, Endlich K, Segerer S, Eulberg D et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 2009; 52: 2445–2454.

    Article  CAS  PubMed  Google Scholar 

  115. Eulberg D, Klussmann S . Spiegelmers: biostable aptamers. Chembiochem 2003; 4: 979–983.

    Article  CAS  PubMed  Google Scholar 

  116. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP . Mirror-image RNA that binds D-adenosine. Nat Biotechnol 1996; 14: 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  117. Huang Y, Liu Y, Yen C, Chen H, Chen S, King CR et al. Rapid mobilization of murine hematopoietic stem and progenitor cells with TG-0054, a novel CXCR4 antagonist. Blood (ASH Annual Meeting Abstracts 2009; 114 (abstract 3542).

  118. Chung DT, Chang L, Huang Y, Tsai C, Hsu C, King CR et al. TG-0054, a novel and potent stem cell mobilizer, displays excellent PK/PD and safety profile in phase I trial. Blood (ASH Annual Meeting Abstracts) 2009; 114 (abstract 866).

  119. Garber K . First results for agents targeting cancer-related inflammation. J Natl Cancer Inst 2009; 101: 1110–1112.

    Article  PubMed  Google Scholar 

  120. Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C et al. A fully human anti-CXCR4 antibody induces apoptosis in vitro and shows anti tumor activity in vivo. Proceedings of the 100th Annual Meeting of the American Association for Cancer Research 2009 (abstract LB-150).

  121. Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A . Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med 2005; 11: 661–665.

    Article  CAS  PubMed  Google Scholar 

  122. O’Callaghan KM, Hsieh M, VanEtten RA, Covic L, Kuliopulos A . CXCR4 pepducins in stem cell mobilization. Blood (ASH Annual Meeting Abstracts) 2009; 114 (abstract 2440).

  123. Moses E, Law D . Ablynx's R&D Investor Day. http://www.ablynx.com/investorrelations/english/documents/RDDayUSA_12Feb_2010_FINALVERSIONpdf2010.

  124. Kolkman JA, Law DA . Nanobodies—from llamas to therapeutic proteins. dRUG Discov Today: tECHNOL 2010; doi:10.1016/. http://www.mendeley.com/research/nanobodies-llamas-therapeutic-proteins-6/.

  125. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363: 446–448.

    Article  CAS  PubMed  Google Scholar 

  126. Skerlj RT, Bridger GJ, Kaller A, McEachern EJ, Crawford JB, Zhou Y et al. Discovery of novel small molecule orally bioavailable C–X–C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J Med Chem 2010; 53: 3376–3388.

    Article  CAS  PubMed  Google Scholar 

  127. Moyle G, DeJesus E, Boffito M, Wong RS, Gibney C, Badel K et al. Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1. Clin Infect Dis 2009; 48: 798–805.

    Article  CAS  PubMed  Google Scholar 

  128. Stone ND, Dunaway SB, Flexner C, Tierney C, Calandra GB, Becker S et al. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob Agents Chemother 2007; 51: 2351–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jenkinson S, Thomson M, McCoy D, Edelstein M, Danehower S, Lawrence W et al. Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrob Agents Chemother 2010; 54: 817–824.

    Article  CAS  PubMed  Google Scholar 

  130. Murakami T, Kumakura S, Yamazaki T, Tanaka R, Hamatake M, Okuma K et al. The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob Agents Chemother 2009; 53: 2940–2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ichiyama K, Yokoyama-Kumakura S, Tanaka Y, Tanaka R, Hirose K, Bannai K et al. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 2003; 100: 4185–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fujii N, Oishi S, Hiramatsu K, Araki T, Ueda S, Tamamura H et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed Engl 2003; 42: 3251–3253.

    Article  CAS  PubMed  Google Scholar 

  133. Zhan W, Liang Z, Zhu A, Kurtkaya S, Shim H, Snyder JP et al. Discovery of small molecule CXCR4 antagonists. J Med Chem 2007; 50: 5655–5664.

    Article  CAS  PubMed  Google Scholar 

  134. Natchus M, Arrendale R, Donald L . MSX-122, an orally available small molecule CXCR4 antagonist, promotes leukocytosis in monkeys at doses that were well tolerated in a 28 day toxicology study. AACR Annual Meeting 2009 Proceedings 2008 2008; 49 (abstract 1189).

  135. Humphries MJ . Integrin structure. Biochem Soc Trans 2000; 28: 311–339.

    Article  CAS  PubMed  Google Scholar 

  136. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  137. Johnson MS, Lu N, Denessiouk K, Heino J, Gullberg D . Integrins during evolution: evolutionary trees and model organisms. Biochim Biophys Acta 2009; 1788: 779–789.

    Article  CAS  PubMed  Google Scholar 

  138. Arnaout MA, Mahalingam B, Xiong JP . Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 2005; 21: 381–410.

    Article  CAS  PubMed  Google Scholar 

  139. Springer TA, Wang JH . The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem 2004; 68: 29–63.

    Article  CAS  PubMed  Google Scholar 

  140. Humphries JD, Byron A, Humphries MJ . Integrin ligands at a glance. J Cell Sci 2006; 119: 3901–3903.

    Article  CAS  PubMed  Google Scholar 

  141. Barczyk M, Carracedo S, Gullberg D . Integrins. Cell Tissue Res 2010; 339: 269–280.

    Article  CAS  PubMed  Google Scholar 

  142. Imai Y, Shimaoka M, Kurokawa M . Essential roles of VLA-4 in the hematopoietic system. Int J Hematol 2010; 91: 569–575.

    Article  PubMed  Google Scholar 

  143. Carman CV, Springer TA . Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 2003; 15: 547–556.

    Article  CAS  PubMed  Google Scholar 

  144. Askari JA, Buckley PA, Mould AP, Humphries MJ . Linking integrin conformation to function. J Cell Sci 2009; 122: 165–170.

    Article  CAS  PubMed  Google Scholar 

  145. Liddington RC, Ginsberg MH . Integrin activation takes shape. J Cell Biol 2002; 158: 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chigaev A, Zwartz G, Graves SW, Dwyer DC, Tsuji H, Foutz TD et al. Alpha4beta1 integrin affinity changes govern cell adhesion. J Biol Chem 2003; 278: 38174–38182.

    Article  CAS  PubMed  Google Scholar 

  147. Hemler ME, Elices MJ, Parker C, Takada Y . Structure of the integrin VLA-4 and its cell–cell and cell–matrix adhesion functions. Immunol Rev 1990; 114: 45–65.

    Article  CAS  PubMed  Google Scholar 

  148. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74: 185–195.

    Article  CAS  PubMed  Google Scholar 

  149. Masumoto A, Hemler ME . Multiple activation states of VLA-4. Mechanistic differences between adhesion to CS1/fibronectin and to vascular cell adhesion molecule-1. J Biol Chem 1993; 268: 228–234.

    CAS  PubMed  Google Scholar 

  150. Lobb RR, Antognetti G, Pepinsky RB, Burkly LC, Leone DR, Whitty A . A direct binding assay for the vascular cell adhesion molecule-1 (VCAM1) interaction with alpha 4 integrins. Cell Adhes Commun 1995; 3: 385–397.

    Article  CAS  PubMed  Google Scholar 

  151. Jakubowski A, Rosa MD, Bixler S, Lobb R, Burkly LC . Vascular cell adhesion molecule (VCAM)-Ig fusion protein defines distinct affinity states of the very late antigen-4 (VLA-4) receptor. Cell Adhes Commun 1995; 3: 131–142.

    Article  CAS  PubMed  Google Scholar 

  152. Petty JM, Lenox CC, Weiss DJ, Poynter ME, Suratt BT . Crosstalk between CXCR4/stromal derived factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow. J Immunol 2009; 182: 604–612.

    Article  CAS  PubMed  Google Scholar 

  153. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest 1999; 104: 1199–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. DiVietro JA, Brown DC, Sklar LA, Larson RS, Lawrence MB . Immobilized stromal cell-derived factor-1alpha triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J Immunol 2007; 178: 3903–3911.

    Article  CAS  PubMed  Google Scholar 

  155. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  PubMed  Google Scholar 

  156. Levesque JP, Leavesley DI, Niutta S, Vadas M, Simmons PJ . Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 1995; 181: 1805–1815.

    Article  CAS  PubMed  Google Scholar 

  157. Kodama H, Nose M, Niida S, Nishikawa S . Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp Hematol 1994; 22: 979–984.

    CAS  PubMed  Google Scholar 

  158. Kovach NL, Lin N, Yednock T, Harlan JM, Broudy VC . Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines. Blood 1995; 85: 159–167.

    CAS  PubMed  Google Scholar 

  159. Makarem R, Newham P, Askari JA, Green LJ, Clements J, Edwards M et al. Competitive binding of vascular cell adhesion molecule-1 and the HepII/IIICS domain of fibronectin to the integrin alpha 4 beta 1. J Biol Chem 1994; 269: 4005–4011.

    CAS  PubMed  Google Scholar 

  160. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60: 577–584.

    Article  CAS  PubMed  Google Scholar 

  161. Guan JL, Hynes RO . Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 1990; 60: 53–61.

    Article  CAS  PubMed  Google Scholar 

  162. Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG . Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 1989; 109: 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  163. Williams DA, Rios M, Stephens C, Patel VP . Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 1991; 352: 438–441.

    Article  CAS  PubMed  Google Scholar 

  164. Fong S, Jones S, Renz ME, Chiu HH, Ryan AM, Presta LG et al. Mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Its binding motif for alpha 4 beta 7 and role in experimental colitis. Immunol Res 1997; 16: 299–311.

    Article  CAS  PubMed  Google Scholar 

  165. Viney JL, Jones S, Chiu HH, Lagrimas B, Renz ME, Presta LG et al. Mucosal addressin cell adhesion molecule-1: a structural and functional analysis demarcates the integrin binding motif. J Immunol 1996; 157: 2488–2497.

    CAS  PubMed  Google Scholar 

  166. Connor EM, Eppihimer MJ, Morise Z, Granger DN, Grisham MB . Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J Leukoc Biol 1999; 65: 349–355.

    Article  CAS  PubMed  Google Scholar 

  167. Quinlan KL, Song IS, Naik SM, Letran EL, Olerud JE, Bunnett NW et al. VCAM-1 expression on human dermal microvascular endothelial cells is directly and specifically up-regulated by substance P. J Immunol 1999; 162: 1656–1661.

    CAS  PubMed  Google Scholar 

  168. Shyjan AM, Bertagnolli M, Kenney CJ, Briskin MJ . Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the alpha 4 beta 7-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J Immunol 1996; 156: 2851–2857.

    CAS  PubMed  Google Scholar 

  169. Erle DJ, Briskin MJ, Butcher EC, Garcia-Pardo A, Lazarovits AI, Tidswell M . Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol 1994; 153: 517–528.

    CAS  PubMed  Google Scholar 

  170. Bellucci R, De Propris MS, Buccisano F, Lisci A, Leone G, Tabilio A et al. Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. Bone Marrow Transplant 1999; 23: 1–8.

    Article  CAS  PubMed  Google Scholar 

  171. Prosper F, Stroncek D, McCarthy JB, Verfaillie CM . Mobilization and homing of peripheral blood progenitors is related to reversible downregulation of alpha4 beta1 integrin expression and function. J Clin Invest 1998; 101: 2456–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mohle R, Murea S, Kirsch M, Haas R . Differential expression of L-selectin, VLA-4, and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery. Exp Hematol 1995; 23: 1535–1542.

    CAS  PubMed  Google Scholar 

  173. Leavesley DI, Oliver JM, Swart BW, Berndt MC, Haylock DN, Simmons PJ . Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen-4 integrin of human CD34+ hemopoietic progenitor cells. J Immunol 1994; 153: 4673–4683.

    CAS  PubMed  Google Scholar 

  174. Yamaguchi M, Ikebuchi K, Hirayama F, Sato N, Mogi Y, Ohkawara J et al. Different adhesive characteristics and VLA-4 expression of CD34(+) progenitors in G0/G1 versus S+G2/M phases of the cell cycle. Blood 1998; 92: 842–848.

    CAS  PubMed  Google Scholar 

  175. Lichterfeld M, Martin S, Burkly L, Haas R, Kronenwett R . Mobilization of CD34+ haematopoietic stem cells is associated with a functional inactivation of the integrin very late antigen 4. Br J Haematol 2000; 110: 71–81.

    Article  CAS  PubMed  Google Scholar 

  176. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 1995; 9: 1883–1895.

    Article  CAS  PubMed  Google Scholar 

  177. Yang JT, Rayburn H, Hynes RO . Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995; 121: 549–560.

    CAS  PubMed  Google Scholar 

  178. Fassler R, Meyer M . Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 1995; 9: 1896–1908.

    Article  CAS  PubMed  Google Scholar 

  179. Potocnik AJ, Brakebusch C, Fassler R . Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 2000; 12: 653–663.

    Article  CAS  PubMed  Google Scholar 

  180. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R . Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 1996; 380: 171–175.

    Article  CAS  PubMed  Google Scholar 

  181. Arroyo AG, Yang JT, Rayburn H, Hynes RO . Alpha4 integrins regulate the proliferation/differentiation balance of multilineage hematopoietic progenitors in vivo. Immunity 1999; 11: 555–566.

    Article  CAS  PubMed  Google Scholar 

  182. Arroyo AG, Yang JT, Rayburn H, Hynes RO . Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell 1996; 85: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  183. Scott LM, Priestley GV, Papayannopoulou T . Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 2003; 23: 9349–9360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Priestley GV, Ulyanova T, Papayannopoulou T . Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous. Blood 2007; 109: 109–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Priestley GV, Scott LM, Ulyanova T, Papayannopoulou T . Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 2006; 107: 2959–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gribi R, Hook L, Ure J, Medvinsky A . The differentiation program of embryonic definitive hematopoietic stem cells is largely alpha4 integrin independent. Blood 2006; 108: 501–509.

    Article  CAS  PubMed  Google Scholar 

  187. Brakebusch C, Fillatreau S, Potocnik AJ, Bungartz G, Wilhelm P, Svensson M et al. Beta1 integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response. Immunity 2002; 16: 465–477.

    Article  CAS  PubMed  Google Scholar 

  188. Bungartz G, Stiller S, Bauer M, Muller W, Schippers A, Wagner N et al. Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood 2006; 108: 1857–1864.

    Article  CAS  PubMed  Google Scholar 

  189. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS . The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 1995; 92: 9647–9651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vermeulen M, Le Pesteur F, Gagnerault MC, Mary JY, Sainteny F, Lepault F . Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 1998; 92: 894–900.

    CAS  PubMed  Google Scholar 

  191. Bonig H, Watts KL, Chang KH, Kiem HP, Papayannopoulou T . Concurrent blockade of alpha4-integrin and CXCR4 in hematopoietic stem/progenitor cell mobilization. Stem Cells 2009; 27: 836–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM, Harlan JM . Synergistic mobilization of hemopoietic progenitor cells using concurrent beta1 and beta2 integrin blockade or beta2-deficient mice. Blood 2001; 97: 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  193. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T . Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 1997; 90: 4779–4788.

    CAS  PubMed  Google Scholar 

  194. Papayannopoulou T, Priestley GV, Nakamoto B . Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 1998; 91: 2231–2239.

    CAS  PubMed  Google Scholar 

  195. Papayannopoulou T, Nakamoto B . Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc Natl Acad Sci USA 1993; 90: 9374–9378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC . Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009; 114: 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bonig H, Wundes A, Chang KH, Lucas S, Papayannopoulou T . Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 2008; 111: 3439–3441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jing D, Oelschlaegel U, Ordemann R, Holig K, Ehninger G, Reichmann H et al. CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant 2010; 45: 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  199. Zohren F, Toutzaris D, Klarner V, Hartung HP, Kieseier B, Haas R . The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 2008; 111: 3893–3895.

    Article  CAS  PubMed  Google Scholar 

  200. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354: 899–910.

    Article  CAS  PubMed  Google Scholar 

  201. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006; 354: 911–923.

    Article  CAS  PubMed  Google Scholar 

  202. Hauser SL, Weiner HL . Natalizumab: immune effects and implications for therapy. Ann Neurol 2006; 59: 731–732.

    Article  CAS  PubMed  Google Scholar 

  203. Stuve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol 2006; 59: 743–747.

    Article  CAS  PubMed  Google Scholar 

  204. Rice GP, Hartung HP, Calabresi PA . Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 2005; 64: 1336–1342.

    Article  CAS  PubMed  Google Scholar 

  205. Foley J . Recommendations for the selection, treatment, and management of patients utilizing natalizumab therapy for multiple sclerosis. Am J Manage Care 2010; 16: S178–S183.

    Google Scholar 

  206. Ransohoff RM . Natalizumab for multiple sclerosis. N Engl J Med 2007; 356: 2622–2629.

    Article  CAS  PubMed  Google Scholar 

  207. Davenport RJ, Munday JR . Blocking alpha4-integrins—a small molecule approach to treatment of multiple sclerosis. J Neurol Sci 2008; 274: 27–30.

    Article  CAS  PubMed  Google Scholar 

  208. Davenport RJ, Munday JR . Alpha4-integrin antagonism—an effective approach for the treatment of inflammatory diseases? Drug Discov Today 2007; 12: 569–576.

    Article  CAS  PubMed  Google Scholar 

  209. Jackson DY . Alpha 4 integrin antagonists. Curr Pharm Des 2002; 8: 1229–1253.

    Article  CAS  PubMed  Google Scholar 

  210. Yang GX, Hagmann WK . VLA-4 antagonists: potent inhibitors of lymphocyte migration. Med Res Rev 2003; 23: 369–392.

    Article  CAS  PubMed  Google Scholar 

  211. Sagi K, Izawa H, Chiba A, Okuzumi T, Yoshimura T, Tanaka Y et al. Novel Phenylalanine Derivative. Ajinomoto Co. Inc., Patent WO 2003/070709, European Patent Bulletin, 2003.

  212. Ghosh S, Panaccione R . Anti-adhesion molecule therapy for inflammatory bowel disease. Therap Adv Gastroenterol 2010; 3: 239–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Takazoe M, Watanabe M, Kawaguchi T, Matsumoto T, Oshitani N, Matsui T et al. Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn's disease—a randomized, double-blind, placebo-controlled trial. Gastroenterology 2009; 136 (abstract S1066).

  214. Muro F, Iimura S, Sugimoto Y, Yoneda Y, Chiba J, Watanabe T et al. Discovery of trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxamido)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid: an orally active, selective very late antigen-4 antagonist. J Med Chem 2009; 52: 7974–7992.

    Article  CAS  PubMed  Google Scholar 

  215. Leone DR, Giza K, Gill A, Dolinski BM, Yang W, Perper S et al. An assessment of the mechanistic differences between two integrin alpha 4 beta 1 inhibitors, the monoclonal antibody TA-2 and the small molecule BIO5192, in rat experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther 2003; 305: 1150–1162.

    Article  CAS  PubMed  Google Scholar 

  216. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114: 1340–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ehninger A, Trumpp A . The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011; 208: 421–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116: 4815–4828.

    Article  CAS  PubMed  Google Scholar 

  220. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC . Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208: 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ . Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 2011; 117: 1540–1549.

    Article  CAS  PubMed  Google Scholar 

  222. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS . Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442–447.

    Article  CAS  PubMed  Google Scholar 

  224. Mendez-Ferrer S, Battista M, Frenette PS . Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann NY Acad Sci 2010; 1192: 139–144.

    Article  CAS  PubMed  Google Scholar 

  225. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  PubMed  Google Scholar 

  226. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fruehauf S, Seeger T, Maier P, Li L, Weinhardt S, Laufs S et al. The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 2006; 34: 1052–1059.

    Article  CAS  PubMed  Google Scholar 

  228. Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J et al. A combination of granulocyte-colony-stimulating factor(G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 2009; 11: 992–1001.

    Article  CAS  PubMed  Google Scholar 

  229. Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006; 107: 3772–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001; 29: 345–355.

    Article  CAS  PubMed  Google Scholar 

  231. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005; 23: 879–894.

    Article  CAS  PubMed  Google Scholar 

  232. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  233. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48.

    Article  CAS  PubMed  Google Scholar 

  234. Golan K, Vagima Y, Ludin A, Itkin T, Kalinkovich A, Cohen-Gur S et al. The chemotactic lipid S1P regulates hematopoietic progenitor cell egress and mobilization via its major receptor S1P1 and by SDF-1 inhibition in a p38/Akt/mTOR dependent manner. Blood (ASH Annual Meeting Abstracts 2010; 116 (abstract 553).

  235. Harun N, Thien M, Juarez JG, Bradstock KF, Bendall LJ . S1P1 agonists for use as adjunct mobilizing agents. Blood (ASH Annual Meeting Abstracts) 2010; 116 (abstract 826).

  236. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yanai N, Matsui N, Furusawa T, Okubo T, Obinata M . Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. Blood 2000; 96: 139–144.

    CAS  PubMed  Google Scholar 

  238. Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T, Brinkmann V et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 2004; 103: 4478–4486.

    Article  CAS  PubMed  Google Scholar 

  239. Xue X, Cai Z, Seitz G, Kanz L, Weisel KC, Mohle R . Differential effects of G protein coupled receptors on hematopoietic progenitor cell growth depend on their signaling capacities. Ann NY Acad Sci 2007; 1106: 180–189.

    Article  CAS  PubMed  Google Scholar 

  240. Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL . S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med 2010; 207: 1113–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Burger JA, Peled A . CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 2009; 23: 43–52.

    Article  CAS  PubMed  Google Scholar 

  242. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tavor S, Petit I . Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Semin Cancer Biol 2010; 20: 178–185.

    Article  CAS  PubMed  Google Scholar 

  245. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Capoccia BJ, Shepherd RM, Link DC . G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 2006; 108: 2438–2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 2010; 107: 11008–11013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Khan A, Greenman J, Archibald SJ . Small molecule CXCR4 chemokine receptor antagonists: developing drug candidates. Curr Med Chem 2007; 14: 2257–2277.

    Article  CAS  PubMed  Google Scholar 

  249. Kirton JP, Xu Q . Endothelial precursors in vascular repair. Microvasc Res 2010; 79: 193–199.

    Article  CAS  PubMed  Google Scholar 

  250. Petit I, Jin D, Rafii S . The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 2007; 28: 299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM . Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 2009; 4: 62–72.

    Article  CAS  PubMed  Google Scholar 

  252. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M . Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol 2008; 36: 742–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Shepherd RM, Capoccia BJ, Devine SM, Dipersio J, Trinkaus KM, Ingram D et al. Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood 2006; 108: 3662–3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 1994; 87: 609–613.

    Article  CAS  PubMed  Google Scholar 

  255. Korbling M, Huh YO, Durett A, Mirza N, Miller P, Engel H et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86: 2842–2848.

    CAS  PubMed  Google Scholar 

  256. Stroncek DF, Clay ME, Herr G, Smith J, Jaszcz WB, Ilstrup S et al. The kinetics of G-CSF mobilization of CD34+ cells in healthy people. Transfus Med 1997; 7: 19–24.

    Article  CAS  PubMed  Google Scholar 

  257. Gazitt Y, Freytes CO, Akay C, Badel K, Calandra G . Improved mobilization of peripheral blood CD34+ cells and dendritic cells by AMD3100 plus granulocyte-colony-stimulating factor in non-Hodgkin's lymphoma patients. Stem Cells Dev 2007; 16: 657–666.

    Article  CAS  PubMed  Google Scholar 

  258. Hess DA, Bonde J, Craft TP, Wirthlin L, Hohm S, Lahey R et al. Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor. Biol Blood Marrow Transplant 2007; 13: 398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Donahue RE, Jin P, Bonifacino AC, Metzger ME, Ren J, Wang E et al. Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+ cell populations based on global gene and microRNA expression signatures. Blood 2009; 114: 2530–2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Jin P, Wang E, Ren J, Childs R, Shin JW, Khuu H et al. Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis. J Transl Med 2008; 6: 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lin K, Ateeq HS, Hsiung SH, Chong LT, Zimmerman CN, Castro A et al. Selective, tight-binding inhibitors of integrin alpha4beta1 that inhibit allergic airway responses. J Med Chem 1999; 42: 920–934.

    Article  CAS  PubMed  Google Scholar 

  262. Norris V, Choong L, Tran D, Corden Z, Boyce M, Arshad H et al. Effect of IVL745, a VLA-4 antagonist, on allergen-induced bronchoconstriction in patients with asthma. J Allergy Clin Immunol 2005; 116: 761–767.

    Article  CAS  PubMed  Google Scholar 

  263. Baldwin JJ, McDonald E, Moriarity K, Sarko C, Machinaga N, Nakayama A et al. VLA-4 Inhibitor compounds, Daiichi Pharmaceutical Co. Ltd: Japan; Pharmacopeia, Inc. Patent WO2001000206 2000.

  264. Hijazi Y, Welker H, Dorr AE, Tang JP, Blain R, Renzetti LM et al. Pharmacokinetics, safety, and tolerability of R411, a dual alpha4beta1-alpha4beta7 integrin antagonist after oral administration at single and multiple once-daily ascending doses in healthy volunteers. J Clin Pharmacol 2004; 44: 1368–1378.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work we are not able to discuss because of space limitations. This work was supported in part by research funding from The Barnes Jewish Foundation (St Louis, MO, USA), Genzyme Corporation (Cambridge, MA, USA) and National Institutes of Health Grant R21 CA141523-01 to JFD. The project described was also supported by Grant Nos. 1 UL1 RR024992-01, 1 TL1 RR024995-01 and 1 KL2 RR 024994-01 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research, and its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F DiPersio.

Ethics declarations

Competing interests

MPR and JFD have received honoraria from Genzyme Corp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rettig, M., Ansstas, G. & DiPersio, J. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26, 34–53 (2012). https://doi.org/10.1038/leu.2011.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.197

Keywords

This article is cited by

Search

Quick links