Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Energy expenditure and body composition

Measuring energy expenditure in clinical populations: rewards and challenges

Abstract

The measurement of energy expenditure (EE) is recommended as an important component of comprehensive clinical nutrition assessments in patients with altered metabolic states, who failed to respond to nutrition support and with critical illness that require individualized nutrition support. There is evidence that EE is variable in patients with metabolic diseases, such as chronic renal disease, cirrhosis, HIV, cancer cachexia, cystic fibrosis and patients under intensive care. By using appropriate techniques and interpretations of basal or resting EE, clinicians can facilitate the adequate nutrition support with minimum negative impacts from under- or overfeeding in these patients. This review is based on our current understanding of the different components of EE and the techniques to measure them, and to re-examine advances and challenges to determine energy needs in clinical populations with more focuses on the obese, pediatric and elderly patients. In addition, technological advances have expanded the choices of market-available equipments for assessing EE, which also bring specific challenges and rewards in selecting the right equipment with specific performance criteria. Lastly, analytical considerations of interpreting the results of EE in the context of changing body composition are presented and discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Halliday D, Hesp R, Stalley SF, Warwick P, Altman DG, Garrow JS . Resting metabolic rate, weight, surface area and body composition in obese women. Int J Obes 1979; 3: 1–6.

    CAS  PubMed  Google Scholar 

  2. Ravussin E, Burnand B, Schutz Y, Jequier E . Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am J Clin Nutr 1982; 35: 566–573.

    Article  CAS  PubMed  Google Scholar 

  3. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C . Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 1986; 78: 1568–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz A, Kuk JL, Lamothe G, Doucet E . Greater than predicted decrease in resting energy expenditure and weight loss: results from a systematic review. Obesity (Silver Spring, MD) 2012; 20: 2307–2310.

    Article  Google Scholar 

  5. Segal KR, Pi-Sunyer FX . Exercise and obesity. Med Clin N Am 1989; 73: 217–236.

    Article  CAS  PubMed  Google Scholar 

  6. Levine JA . Measurement of energy expenditure. Public Health Nutr 2005; 8: 1123–1132.

    Article  PubMed  Google Scholar 

  7. da Rocha EE, Alves VG, da Fonseca RB . Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care 2006; 9: 247–256.

    Article  PubMed  Google Scholar 

  8. Fontaine E, Muller MJ . Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient. Curr Opin Clin Nutr Metab Care 2011; 14: 171–175.

    Article  CAS  PubMed  Google Scholar 

  9. Kinney JM, Tucker HN (eds) Energy Metabolism: Tissue Determinants and Cellular Corollaries. Raven Press: New York, NY, USA, 1991.

    Google Scholar 

  10. Brychta R, Wohlers E, Moon J, Chen K . Energy expenditure: measurement of human metabolism. IEEE Eng Med Biol Mag 2010; 29: 42–47.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leonard WR . Laboratory and field methods for measuring human energy expenditure. Am J Hum Biol 2012; 24: 372–384.

    Article  PubMed  Google Scholar 

  12. Weir JB . New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949; 109: 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. VIASYS Healthcare. Vmax Series 2130 Spirometer V6200 Autobox Reference Manual. SensorMedics Corporation, 2001.

  14. Malone AM . Methods of assessing energy expenditure in the intensive care unit. Nutr Clin Pract 2002; 17: 21–28.

    Article  PubMed  Google Scholar 

  15. Wooley JA, Sax HC . Indirect calorimetry: applications to practice. Nutr Clin Pract 2003; 18: 434–439.

    Article  PubMed  Google Scholar 

  16. Macfarlane DJ . Automated metabolic gas analysis systems: a review. Sports Med 2001; 31: 841–861.

    Article  CAS  PubMed  Google Scholar 

  17. Wahrlich V, Anjos LA, Going SB, Lohman TG . Validation of the VO2000 calorimeter for measuring resting metabolic rate. Clin Nutr 2006; 25: 687–692.

    Article  PubMed  Google Scholar 

  18. Cooper JA, Watras AC, O’Brien MJ, Luke A, Dobratz JR, Earthman CP et al. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J Am Diet Assoc 2009; 109: 128–132.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Phang PT, Rich T, Ronco J . A validation and comparison study of two metabolic monitors. J Parenter Enteral Nutr 1990; 14: 259–261.

    Article  CAS  Google Scholar 

  20. Pupim LB, Cuppari L, Ikizler TA . Nutrition and metabolism in kidney disease. Semin Nephrol 2006; 26: 134–157.

    Article  CAS  PubMed  Google Scholar 

  21. Foster BJ, Leonard MB . Measuring nutritional status in children with chronic kidney disease. Am J Clin Nutr 2004; 80: 801–814.

    Article  CAS  PubMed  Google Scholar 

  22. Witte MK . Metabolic measurements during mechanical ventilation in the pediatric intensive care unit. Respir Care Clin N Am 1996; 2: 573–586.

    CAS  PubMed  Google Scholar 

  23. Munck A . Nutritional considerations in patients with cystic fibrosis. Expert Rev Respir Med 2010; 4: 47–56.

    Article  CAS  PubMed  Google Scholar 

  24. Bosaeus I . Nutritional support in multimodal therapy for cancer cachexia. Support Care Cancer 2008; 16: 447–451.

    Article  PubMed  Google Scholar 

  25. Kosmiski L . Energy expenditure in HIV infection. Am J Clin Nutr 2011; 94: 1677S–1682SS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muller MJ, Willmann O, Fenk A, Rieger A, Selberg O, Canzler H et al. Resting energy expenditure and the thermic effect of adrenaline in patients with liver cirrhosis. Clin Sci (Lond) 1992; 83: 191–198.

    Article  CAS  Google Scholar 

  27. Muller MJ . Malnutrition and hypermetabolism in patients with liver cirrhosis. Am J Clin Nutr 2007; 85: 1167–1168.

    Article  PubMed  Google Scholar 

  28. Flegal KM, Carroll MD, Kit BK, Ogden CL . Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012; 307: 491–497.

    Article  PubMed  Google Scholar 

  29. Frankenfield D, Roth-Yousey L, Compher C . Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc 2005; 105: 775–789.

    Article  PubMed  Google Scholar 

  30. Anderegg BA, Worrall C, Barbour E, Simpson KN, Delegge M . Comparison of resting energy expenditure prediction methods with measured resting energy expenditure in obese, hospitalized adults. J Parenter Enteral Nutr 2009; 33: 168–175.

    Article  Google Scholar 

  31. Kee AL, Isenring E, Hickman I, Vivanti A . Resting energy expenditure of morbidly obese patients using indirect calorimetry: a systematic review. Obes Rev 2012; 13: 753–765.

    Article  PubMed  Google Scholar 

  32. Glynn CC, Greene GW, Winkler MF, Albina JE . Predictive versus measured energy expenditure using limits-of-agreement analysis in hospitalized, obese patients. J Parenter Enteral Nutr 1999; 23: 147–154.

    Article  CAS  Google Scholar 

  33. Ireton-Jones CS . Considerations in feeding obese patients: a review of a classic article. 1986. Nutr Clin Pract 2002; 17: 190–191.

    Article  PubMed  Google Scholar 

  34. Breen HB, Ireton-Jones CS . Predicting energy needs in obese patients. Nutr Clin Pract 2004; 19: 284–289.

    Article  PubMed  Google Scholar 

  35. Martino JL, Stapleton RD, Wang M, Day AG, Cahill NE, Dixon AE et al. Extreme obesity and outcomes in critically ill patients. Chest 2011; 140: 1198–1206.

    Article  PubMed  PubMed Central  Google Scholar 

  36. O’Brien JM, Philips GS, Ali NA, Aberegg SK, Marsh CB, Lemeshow S . The association between body mass index, processes of care, and outcomes from mechanical ventilation: a prospective cohort study. Crit Care Med 2012; 40: 1456–1463.

    Article  PubMed  Google Scholar 

  37. Berger MM, Chiolero RL . Hypocaloric feeding: pros and cons. Curr Opin Crit Care 2007; 13: 180–186.

    Article  PubMed  Google Scholar 

  38. Laddu D, Dow C, Hingle M, Thomson C, Going S . A review of evidence-based strategies to treat obesity in adults. Nutr Clin Pract 2011; 26: 512–525.

    Article  PubMed  Google Scholar 

  39. Schulman RC, Mechanick JI . Can nutrition support interfere with recovery from acute critical illness? World Rev Nutr Diet 2013; 105: 69–81.

    Article  PubMed  Google Scholar 

  40. UN Department of Economic and Social Affairs: Population Division. Population Ageing and Development 2012. United Nations: New York, NY, USA, 2012, available at: http://www.un.org/esa/population/publications/2012WorldPopAgeingDev_Chart/2012PopAgeingandDev_WallChart.pdf (accessed on 2 December 2012).

  41. Tzankoff SP, Norris AH . Longitudinal changes in basal metabolism in man. J Appl Physiol 1978; 45: 536–539.

    Article  CAS  PubMed  Google Scholar 

  42. Roberts SB, Dallal GE . Energy requirements and aging. Public Health Nutr 2005; 8: 1028–1036.

    Article  PubMed  Google Scholar 

  43. Gaillard C, Alix E, Salle A, Berrut G, Ritz P . Energy requirements in frail elderly people: a review of the literature. Clin Nutr 2007; 26: 16–24.

    Article  CAS  PubMed  Google Scholar 

  44. Frisard MI, Broussard A, Davies SS, Roberts LJ, Rood J, de Jonge L et al. Aging, resting metabolic rate, and oxidative damage: results from the Louisiana Healthy Aging Study. J Gerontol Ser A 2007; 62: 752–759.

    Article  Google Scholar 

  45. Taylor NA, Allsopp NK, Parkes DG . Preferred room temperature of young vs aged males: the influence of thermal sensation, thermal comfort, and affect. J Gerontol Ser A 1995; 50: M216–M221.

    Article  CAS  Google Scholar 

  46. WHO (ed) Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation 2001. WHO: Rome, Italy.

  47. Olhager E, Forsum E . Total energy expenditure, body composition and weight gain in moderately preterm and full-term infants at term postconceptional age. Acta Paediatr 2003; 92: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  48. Guilfoy VM, Wright-Coltart S, Leitch CA, Denne SC . Energy expenditure in extremely low birth weight infants near time of hospital discharge. J Pediatr 2008; 153: 612–615.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Forsyth JS, Crighton A . Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch Dis Child Fetal Neonatal Ed 1995; 73: F4–F7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang Z, Yan Q, Su Y, Acheson KJ, Thelin A, Piguet-Welsch C et al. Energy expenditure of Chinese infants in Guangdong Province, south China, determined with use of the doubly labeled water method. Am J Clin Nutr 1998; 67: 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  51. Butte NF, Wong WW, Hopkinson JM, Heinz CJ, Mehta NR, Smith EO . Energy requirements derived from total energy expenditure and energy deposition during the first 2 y of life. Am J Clin Nutr 2000; 72: 1558–1569.

    Article  CAS  PubMed  Google Scholar 

  52. Torun B, Viteri FE . Nutrition and function, with emphasis on physical activity. Int Child Health 1993; 4: 15–26.

    CAS  PubMed  Google Scholar 

  53. Torun B, Viteri FE . Influence of exercise on linear growth. Eur J Clin Nutr 1994; 48 (Suppl 1), S186–S189.

    PubMed  Google Scholar 

  54. Torun B . Energy requirements of children and adolescents. Public Health Nutr 2005; 8: 968–993.

    Article  PubMed  Google Scholar 

  55. Craggs C, Corder K, van Sluijs EM, Griffin SJ . Determinants of change in physical activity in children and adolescents: a systematic review. Am J Prev Med 2011; 40: 645–658.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 2012; 307: 483–490.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lobstein T, Baur L, Uauy R . Obesity in children and young people: a crisis in public health. Obes Rev 2004; 5 (Suppl 1), 4–104.

    Article  PubMed  Google Scholar 

  58. Ventham JC, Reilly JJ . Reproducibility of resting metabolic rate measurement in children. Br J Nutr 1999; 81: 435–437.

    Article  CAS  PubMed  Google Scholar 

  59. Compher C, Frankenfield D, Keim N, Roth-Yousey L . Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 2006; 106: 881–903.

    Article  PubMed  Google Scholar 

  60. Mellecker RR, McManus AM . Measurement of resting energy expenditure in healthy children. J Parenter Enteral Nutr 2009; 33: 640–645.

    Article  Google Scholar 

  61. Foltz MB, Schiller MR, Ryan AS . Nutrition screening and assessment: current practices and dietitians’ leadership roles. J Am Diet Assoc 1993; 93: 1388–1395.

    Article  CAS  PubMed  Google Scholar 

  62. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Growth Velocity Based on Weight, Length and Head Circumference: Methods and Development. World Health Organization: Geneva, Switzerland, 2009.

  63. World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. World Health Organization: Geneva, Switzerland, 2006.

  64. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z et al. 2000 CDC growth charts for the United States: Methods and development. Vital Health Stat 2002; 11: 1–190.

    Google Scholar 

  65. Wiskin AE, Davies JH, Wootton SA, Beattie RM . Energy expenditure, nutrition and growth. Arch Dis Child 2011; 96: 567–572.

    Article  CAS  PubMed  Google Scholar 

  66. Nieman DC, Austin MD, Chilcote SM, Benezra L . Validation of a new handheld device for measuring resting metabolic rate and oxygen consumption in children. Int J Sport Nutr Exerc Metab 2005; 15: 186–194.

    Article  PubMed  Google Scholar 

  67. Catharina B, Gunnevi S, Christel L . Validity of armband measuring energy expenditure in overweight and obese children. Med Sci Sports Exerc 2010; 42: 1154–1161.

    Google Scholar 

  68. Harris JA, Benedict FG A Biometric Study of Basal Metabolism in Man. Publication No. 279, Carnegie Institute of Washington: Washington, DC, USA, 1919.

    Google Scholar 

  69. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO . A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990; 51: 241–247.

    Article  CAS  PubMed  Google Scholar 

  70. Owen OE, Kavle E, Owen RS, Polansky M, Caprio S, Mozzoli MA et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr 1986; 44: 1–19.

    Article  CAS  PubMed  Google Scholar 

  71. Owen OE, Holup JL, D’Alessio DA, Craig ES, Polansky M, Smalley KJ et al. A reappraisal of the caloric requirements of men. Am J Clin Nutr 1987; 46: 875–885.

    Article  CAS  PubMed  Google Scholar 

  72. University FaAOWHOUN. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation World Health Organization Technical Report Series 724. WHO: Geneva, Switzerland, 1985.

  73. Muller MJ, Bosy-Westphal A, Klaus S, Kreymann G, Luhrmann PM, Neuhauser-Berthold M et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am J Clin Nutr 2004; 80: 1379–1390.

    Article  PubMed  Google Scholar 

  74. de Oliveira EP, Orsatti FL, Teixeira O, Maesta N, Burini RC . Comparison of predictive equations for resting energy expenditure in overweight and obese adults. J Obes 2011; 2011: 534714.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schofield WN . Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39 (Suppl 1), 5–41.

    PubMed  Google Scholar 

  76. Dietz WH, Bandini LG, Schoeller DA . Estimates of metabolic rate in obese and nonobese adolescents. J Pediatr 1991; 118: 146–149.

    Article  CAS  PubMed  Google Scholar 

  77. Finan K, Larson DE, Goran MI . Cross-validation of prediction equations for resting energy expenditure in young, healthy children. J Am Diet Assoc 1997; 97: 140–145.

    Article  CAS  PubMed  Google Scholar 

  78. Rodriguez G, Moreno LA, Sarria A, Fleta J, Bueno M . Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations. Clin Nutr 2002; 21: 255–260.

    Article  CAS  PubMed  Google Scholar 

  79. Torun B, Davies PS, Livingstone MB, Paolisso M, Sackett R, Spurr GB . Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur J Clin Nutr 1996; 50 (Suppl 1), S37–S80. discussion S-1.

    PubMed  Google Scholar 

  80. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G et al. ESPEN Guidelines on Enteral Nutrition: intensive care. Clin Nutr 2006; 25: 210–223.

    Article  CAS  PubMed  Google Scholar 

  81. Kleiber M . Body size and metabolism. Hilgardia 1932; 6: 315–353.

    Article  CAS  Google Scholar 

  82. Kleiber M The Fire of Life: An Introduction to Animal Energetics 2nd edn. Krieger: Huntington, NY, USA, 1975.

    Google Scholar 

  83. Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB . Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord 1995; 19: 644–652.

    CAS  PubMed  Google Scholar 

  84. Poehlman ET, Toth MJ . Mathematical ratios lead to spurious conclusions regarding age- and sex-related differences in resting metabolic rate. Am J Clin Nutr 1995; 61: 482–485.

    Article  CAS  PubMed  Google Scholar 

  85. Thibault R, Pichard C . The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab 2012; 60: 6–16.

    Article  CAS  PubMed  Google Scholar 

  86. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL . Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008; 88: 906–912.

    Article  CAS  PubMed  Google Scholar 

  87. Flatt JP . Differences in basal energy expenditure and obesity. Obesity (Silver Spring, MD) 2007; 15: 2546–2548.

    Article  Google Scholar 

  88. Tamboli RA, Hossain HA, Marks PA, Eckhauser AW, Rathmacher JA, Phillips SE et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring, MD) 2010; 18: 1718–1724.

    Article  CAS  Google Scholar 

  89. Doucet E, Pierre S, Almeras N, Mauriege P, Richard D, Tremblay A . Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: is there an important contribution of leptin? J Clin Endocrinol Metab 2000; 85: 1550–1556.

    CAS  PubMed  Google Scholar 

  90. Sumithran P, Proietto J . The defence of body weight: a physiological basis for weight regain after weight loss. Clin Sci (Lond) 2013; 124: 231–241.

    Article  Google Scholar 

  91. Druyan ME, Compher C, Boullata JI, Braunschweig CL, George DE, Simpser E et al. Clinical Guidelines for the Use of Parenteral and Enteral Nutrition in Adult and Pediatric Patients: applying the GRADE system to development of A.S.P.E.N. clinical guidelines. J Parenter Enteral Nutr 2012; 36: 77–80.

    Article  Google Scholar 

  92. Walker RN, Heuberger RA . Predictive equations for energy needs for the critically ill. Respir Care 2009; 54: 509–521.

    PubMed  Google Scholar 

  93. McClave SA, Snider HL, Ireton-Jones C . Can we justify continued interest in indirect calorimetry? Nutr Clin Pract 2002; 17: 133–136.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Rachel Perron and Dr Lilian de Jonge for their help in this review. This work was funded by NIH Intramural research funding resources (NIDDK Z01 DK071013, Z01 DK071014 and Clinical Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Y Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psota, T., Chen, K. Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr 67, 436–442 (2013). https://doi.org/10.1038/ejcn.2013.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.38

Keywords

This article is cited by

Search

Quick links