Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Knockout mice: a paradigm shift in modern immunology

Key Points

  • The development of genetic engineering techniques to functionally 'knock out' a single gene of interest in a living animal has revolutionized our study of mammalian physiology in general and immunology in particular.

  • Single gene knockouts, multiple gene knockouts, recombinase-activating gene (Rag) complementation mutants and knock-in transgenic animals have all contributed to our increased understanding of gene functions in lymphocytes and other haematopoietic cells.

  • Several factors, including genetic background and targeting strategy, must be borne in mind when analysing the phenotypes of gene-deficient mice.

  • Gene targeting has contributed greatly to the establishment of basic models of lymphocyte biology. Thymocyte development and survival, positive and negative thymocyte selection, activation pathways in immature versus mature T cells, intracellular signalling downstream of T-cell-receptor engagement, co-stimulation, and regulatory pathways have been examined using knockout technology.

  • Future advances in gene-knockout technology will probably include the ability to turn a specific gene on and off at will, and mutational systems that examine gene function and interaction more holistically. Insights into mechanisms underlying cancer and autoimmunity can be expected.

Abstract

In the past decade, advances in genetic engineering and mouse knockout technology have transformed our understanding of the immune system. In particular, new perspectives on T-cell development, co-stimulation and activation have emerged from the study of single and multiple gene-knockout animals, as well as from conditional knockout and 'knock-in' mutants. Analysis of these animals has clarified important intracellular signalling pathways and has shed light on the regulatory mechanisms that govern normal immune responses and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The classical approach to gene-targeting in embryonic stem cells.
Figure 2: RAG-deficient blastocyst complementation.
Figure 3: Cre/loxP-mediated gene targeting in embryonic stem cells.
Figure 4: Schematic of thymocyte development as shown by gene deletion.
Figure 5: Schematic of TCR signalling.

Similar content being viewed by others

References

  1. Maslow, A. H. Psychology of Science: A Reconnaissance (Harper & Row, New York, 1966).

    Google Scholar 

  2. Koller, B. H. & Smithies, O. Altering genes in animals by gene targeting. Annu. Rev. Immunol. 10, 705–730 (1992).

    CAS  PubMed  Google Scholar 

  3. Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248,1227–1230 (1990).

    CAS  PubMed  Google Scholar 

  4. Zijlstra, M. et al. β2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344, 742–746 (1990).References 3 and 4 were the first reports of knockout mice with relevance to immunology.

    CAS  PubMed  Google Scholar 

  5. Fung-Leung, W. P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443–449 (1991).

    CAS  PubMed  Google Scholar 

  6. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    CAS  PubMed  Google Scholar 

  7. Mak, T. W. (ed) The Gene Knockout FactsBook (Academic, San Diego, 1998).

    Google Scholar 

  8. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).This paper contained the first description of the RAG complementation assay.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).This report describes the first use of the Cre/ loxP system for tissue-specific deletion in lymphocytes.

    CAS  PubMed  Google Scholar 

  10. Mak, T. W. et al. Brca1 is required for T cell lineage development but not TCR loci rearrangement. Nature Immunol. 1, 77–82 (2000).

    CAS  Google Scholar 

  11. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  12. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    CAS  PubMed  Google Scholar 

  13. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    CAS  PubMed  Google Scholar 

  14. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    CAS  PubMed  Google Scholar 

  15. Pannetier, C., Hu-Li, J. & Paul, W. E. Bias in the expression of IL-4 alleles: the use of T cells from a GFP knock-in mouse. Cold Spring Harb. Symp. Quant. Biol. 64, 599–602 (1999).

    CAS  PubMed  Google Scholar 

  16. Hu-Li, J. et al. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14, 1–11 (2001).

    CAS  PubMed  Google Scholar 

  17. Litzenburger, T. et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 188, 169–180 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    CAS  PubMed  Google Scholar 

  19. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS  PubMed  Google Scholar 

  20. Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618 (1994).

    CAS  PubMed  Google Scholar 

  21. Ashton-Rickardt, P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663 (1994).References 19–21 were the first to provide evidence that an affinity/avidity model governs thymocyte selection.

    CAS  PubMed  Google Scholar 

  22. Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Tanchot, C., Lemonnier, F. A., Pérarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  24. Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 6, 1043–1053 (1999).

    CAS  PubMed  Google Scholar 

  25. Rengarajan, J., Szabo, S. J. & Glimcher, L. H. Transcriptional regulation of TH1/TH2 polarization. Immunol. Today 21, 479–483 (2000).

    CAS  PubMed  Google Scholar 

  26. Luther, S. A. & Cyster, J. G. Chemokines as regulators of T cell differentiation. Nature Immunol. 2, 102–107 (2001).

    CAS  Google Scholar 

  27. O'Garra, A. & Arai, N. The molecular basis of T helper 1 and T helper 2 differentiation. Trends Cell Biol. 10, 542–550 (2000).

    CAS  PubMed  Google Scholar 

  28. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Newton, K. & Strasser, A. Cell death control in lymphocytes. Adv. Immunol. 76, 179–226 (2000).

    CAS  PubMed  Google Scholar 

  30. Dustin, M. L., Allen, P. M. & Shaw, A. S. Environmental control of immunological synapse formation and duration. Trends Immunol. 22, 192–194 (2001).

    CAS  PubMed  Google Scholar 

  31. Leonard, W. J. Role of Jak kinases and STATs in cytokine signal transduction. Int. J. Hematol. 73, 271–277 (2001).

    CAS  PubMed  Google Scholar 

  32. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Robey, E. Regulation of T cell fate by Notch. Annu. Rev. Immunol. 17, 283–295 (1999).

    CAS  PubMed  Google Scholar 

  34. Molina, T. J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992).This report describes the first mutation of a signalling molecule using knockout mice. The data unequivocally showed that p56lck is crucial for T-cell development and activation in vivo.

    CAS  PubMed  Google Scholar 

  35. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    CAS  PubMed  Google Scholar 

  36. Mombaerts, P. et al. RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS  PubMed  Google Scholar 

  37. Shinkai, Y. et al. RAG-2 deficient mice lack mature lymphocytes owing to inablility to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS  PubMed  Google Scholar 

  38. Fehling, H. J. & von Boehmer, H. Early αβ T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275 (1997).

    CAS  PubMed  Google Scholar 

  39. Appleby, M. W. et al. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell 70, 751–763 (1992).

    CAS  PubMed  Google Scholar 

  40. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    CAS  PubMed  Google Scholar 

  41. Groves, T. et al. Fyn can partially substitute for Lck in T lymphocyte development. Immunity 5, 417–428 (1996).

    CAS  PubMed  Google Scholar 

  42. van Oers, N. S., Lowin-Kropf, B., Finlay, D., Connolly, K. & Weiss, A. αβ T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 5, 429–436 (1996).

    CAS  PubMed  Google Scholar 

  43. Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394, 901–904 (1998).

    CAS  PubMed  Google Scholar 

  44. Schmedt, C. & Tarakhovsky, A. Autonomous maturation of α/β T lineage cells in the absence of COOH-terminal Src kinase (Csk). J. Exp. Med. 193, 815–825 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, A. M. et al. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl Acad. Sci. USA 94, 9797–9801 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    CAS  PubMed  Google Scholar 

  47. Mallick-Wood, C. A. et al. Disruption of epithelial γδ T cell repertoires by mutation of the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA 93, 9704–9709 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    CAS  PubMed  Google Scholar 

  49. Pivniouk, V. et al. 1998. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    CAS  PubMed  Google Scholar 

  50. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    CAS  PubMed  Google Scholar 

  51. Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science 291, 1987–1991 (2001).

    CAS  PubMed  Google Scholar 

  52. Love, P. E. et al. T cell development in mice that lack the ζ chain of the T cell antigen receptor complex. Science 261, 918–921 (1993).

    CAS  PubMed  Google Scholar 

  53. Ohno, H. et al. Developmental and functional impairment of T cells in mice lacking CD3ζ chains. EMBO J. 12, 4357–4366 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Malissen, M. et al. T cell development in mice lacking the CD3-ζ/η gene. EMBO J. 12, 4347–4355 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, C.-P. et al. Abnormal T cell development in CD3-ζ−/− mutant mice and identification of a novel T cell population in the intestine. EMBO J. 12, 4863–4875 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shores, E. W. et al. T cell development in mice lacking all T cell receptor ζ family members (ζ,η, and FcɛRIγ). J. Exp. Med. 187, 1093–1101 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, R., Alt, F., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    CAS  PubMed  Google Scholar 

  58. Fischer, K. D. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 374, 474–477 (1995).

    CAS  PubMed  Google Scholar 

  59. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  60. Dave, V. P. et al. CD3δ deficiency arrests development of the αβ but not the γδ T cell lineage. EMBO J. 16, 1360–1370 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    CAS  PubMed  Google Scholar 

  62. Byth, K. F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and in B cell maturation. J. Exp. Med. 183, 1707–1718 (1996).

    CAS  PubMed  Google Scholar 

  63. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    CAS  PubMed  Google Scholar 

  64. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    CAS  PubMed  Google Scholar 

  65. Kong, Y.-Y. et al. Vav regulates peptide-specific apoptosis in thymocytes. J. Exp. Med. 188, 2099–2111 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liao, X. & Littman, R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 3, 757–769 (1995).

    CAS  PubMed  Google Scholar 

  67. Schaeffer, E. M. et al. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med. 192, 987–1000 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pagès, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377 (1999).

    PubMed  Google Scholar 

  69. Dower, N. A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317–322 (2000).

    CAS  Google Scholar 

  70. Delgado, P., Fernández, E., Dave, V., Kappes, D. & Alarcon, B. CD3δcouples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature 406, 426–430 (2000).

    CAS  PubMed  Google Scholar 

  71. Rivera, R. R., Johns, C. P., Quan, J., Johnson, R. S. & Murre, C. Thymocyte selection is regulated by the helix–loop–helix inhibitor protein, ld3. Immunity 12, 17–26 (2000).

    CAS  PubMed  Google Scholar 

  72. Bain, G. et al. Regulation of the helix–loop–helix proteins, E2A and Id3, by the ras-ERK MAPK cascade. Nature Immunol. 2, 165–171 (2001).

    CAS  Google Scholar 

  73. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    CAS  PubMed  Google Scholar 

  74. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993).

    CAS  PubMed  Google Scholar 

  75. White, L. C. et al. Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1−/− mice. Immunity 5, 365–376 (1996).

    CAS  PubMed  Google Scholar 

  76. Penninger, J. M. et al. The interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity 7, 243–254 (1997).

    CAS  PubMed  Google Scholar 

  77. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    CAS  PubMed  Google Scholar 

  78. Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl Acad. Sci. USA 92, 4763–4767 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    CAS  PubMed  Google Scholar 

  80. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  81. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  82. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    CAS  PubMed  Google Scholar 

  83. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    CAS  PubMed  Google Scholar 

  84. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    CAS  PubMed  Google Scholar 

  85. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).References 84 and 85 contain the first evidence that TCR clustering and actin cap formation are essential for T-cell activation. These data also provided the genetic validation that immune synapse formation is indeed essential for T-cell activation.

    CAS  PubMed  Google Scholar 

  86. Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  87. Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott–Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190, 1329–1342 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wulfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc. Natl Acad. Sci. USA 97, 10150–10155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  PubMed  Google Scholar 

  90. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).

    CAS  Google Scholar 

  91. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signaling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  94. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  95. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  96. Kundig, T. M. H. et al. Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061 (1993).

    CAS  PubMed  Google Scholar 

  97. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    CAS  PubMed  Google Scholar 

  98. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268,1472–1476 (1995).

    CAS  PubMed  Google Scholar 

  99. Willerford, D. M. et al. Interleukin-2 receptor α-chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    CAS  PubMed  Google Scholar 

  100. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    CAS  PubMed  Google Scholar 

  101. Borriello, F. et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    CAS  PubMed  Google Scholar 

  102. Mittrücker, H.-W., Shahinian, A., Bouchard, D., Kündig, T. M. & Mak, T. W. Induction of unresponsiveness and impaired T cell expansion by staphylococcal enterotoxin B in CD28-deficient mice. J. Exp. Med. 183, 2481–2488 (1996).

    PubMed  Google Scholar 

  103. Kündig, T. M. et al. Duration of TCR stimulation determines costimulatory requirements of T cells. Immunity 5, 41–52 (1996).

    PubMed  Google Scholar 

  104. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    CAS  PubMed  Google Scholar 

  105. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    CAS  PubMed  Google Scholar 

  106. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  107. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of Ctla-4. Immunity 3, 541–547 (1995).References 106 and 107 showed that CTLA4 (CD152) is a negative regulator of T-cell activation and that mutation of such a molecule results in severe disease and premature death due to T-cell dysregulation.

    CAS  PubMed  Google Scholar 

  108. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  111. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    CAS  PubMed  Google Scholar 

  112. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 31–32 (2001).

    Google Scholar 

  113. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  114. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  115. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    CAS  PubMed  Google Scholar 

  116. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    CAS  PubMed  Google Scholar 

  117. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    CAS  PubMed  Google Scholar 

  118. Grewal, I. S., Xu, J. & Flavell, R. A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 378, 617–620 (1995).

    CAS  PubMed  Google Scholar 

  119. Grewal, I. S. et al. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 273, 1864–1867 (1996).

    CAS  PubMed  Google Scholar 

  120. Yang, Y. & Wilson, J. M. CD40 ligand-dependent T cell activation: requirement of B7–CD28 signaling through CD40. Science 273, 1862–1864 (1996).

    CAS  PubMed  Google Scholar 

  121. Chen, A. I. et al. Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 11, 689–698 (1999).

    CAS  PubMed  Google Scholar 

  122. Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    CAS  PubMed  Google Scholar 

  123. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Ng for administrative assistance, D. Bouchard for graphic design of the Figures and M. Saunders for scientific editing. This work is supported by grants from Amgen, Inc., the Canadian Institute for Health Research and the National Cancer Institute of Canada. J.M.P. is also supported by the Premier's Research Excellence Award and holds a Canadian Research Chair in Cell Biology. P.S.O. is also supported by the G.H. Wood Foundation and holds a Canadian Research Chair in Infection and Immunity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak W. Mak.

Related links

Related links

DATABASES

LocusLink:

 β2-microglobulin

Bcl10

Bcl-xL

CD8

DNA polymerase-β

immunoglobulin μ-chain

NFAT4

RasGRP

ROR-γ

Slp76

Vav1

 MGI:

 aly

Akt

beige

Brca1

c-Cbl

CD3

CD28

CD40

CD45

CD80

CD86

CD134

CD152

CD154

Csk

GADS

gld

Hprt

ICOS

ID3

IL-2

Il4

IL-15

IL-21

IRF1

ITK

LAT

lpr

Mog

motheaten

nude

OX40L

p53

PD1

Pten

RAG1

RAG2

RLK

scid

Syk

WASP

ZAP70

FURTHER INFORMATION

BioMedNet mouse knockout and mutation database

Bioscience mouse knockout database

Harvard mouse knockout database

TBASE

Glossary

HOMOLOGOUS RECOMBINATION

Recombination of an engineered version of a gene into its normal locus in a genome, as opposed to random integration. The use of 'arms' of DNA that are homologous to regions surrounding the gene of interest, facilitates the pReferential insertion of genetically manipulated targeting vectors into the desired locus.

KNOCKOUT TECHNOLOGY

This technology allows for the deletion of a gene, or its function, by gene targeting. A targeting vector in which the gene of interest has been disrupted is introduced into the genome of a mouse embryonic stem cell by homologous recombination.

KNOCK-IN MUTATION

Introduction of a transgene into a precise location in the genome, rather than random integration. Knocking-in uses the same technique of homologous recombination as a knockout strategy, but the targeting vector is designed to preserve or enhance the function and control of the gene of interest, rather than disrupt it.

POSITIVE THYMOCYTE SELECTION

The process in the thymus that selects thymocytes expressing T-cell receptors (TCRs) that have the ability to interact weakly with self-MHC. This weak interaction generates differentiation and survival signals in these lymphocytes, the TCRs of which later recognize foreign peptides bound to self-MHC. Positive selection establishes the MHC-restricted T-cell repertoire.

NEGATIVE THYMOCYTE SELECTION

The deletion of self-reactive thymocytes in the thymus. Thymocytes that express T-cell receptors that strongly recognize self-peptide bound to self-MHC undergo apoptosis in response to the signalling generated by high-affinity binding.

ADOPTIVE TRANSFER

An experimental method in which lymphocytes from an antigen-primed donor mouse are introduced into a recipient mouse that lacks lymphocyte function.

CO-STIMULATION

Receptor-mediated signals required in addition to antigen-receptor engagement to achieve complete lymphocyte activation.

IMMUNOLOGICAL SYNAPSE

The structure formed on the cell surface between a T cell and an antigen-presenting cell; also known as the supra-molecular activation cluster. Important molecules involved in T-cell activation, including the T-cell receptor, numerous signal transduction molecules and molecular adaptors, accumulate at this site. Mobilization of the actin cytoskeleton of the cell is required for immunological synapse formation.

E3 UBIQUITIN LIGASE

Enzyme required to attach the molecular tag ubiquitin to proteins destined for degradation in the proteosomal complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, T., Penninger, J. & Ohashi, P. Knockout mice: a paradigm shift in modern immunology. Nat Rev Immunol 1, 11–19 (2001). https://doi.org/10.1038/3509551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/3509551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing