Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural mimicry in bacterial virulence

Abstract

An important mechanism underlying the strategies used by microbial pathogens to manipulate cellular functions is that of functional mimicry of host activities. In some cases, mimicry is achieved through virulence factors that are direct homologues of host proteins. In others, convergent evolution has produced new effectors that, although having no obvious amino-acid sequence similarity to host factors, are revealed by structural studies to display mimicry at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Host mimicry in the interaction of pathogenic bacteria with host cells.
Figure 2: Construction of a virulence factor by different evolutionary pathways.
Figure 3: The integrin-binding region of invasin mimics the host integrin ligand, fibronectin.

Similar content being viewed by others

References

  1. Guan, K. & Dixon, J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556 (1990).

    Article  CAS  Google Scholar 

  2. Hardt, W.-D., Chen, L.-M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  Google Scholar 

  3. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 (1999).

    Article  CAS  Google Scholar 

  4. Fu, Y. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  Google Scholar 

  5. Stebbins, C. E. & Galán, J. E. Modulation of host signaling by a bacterial mimic. Structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  Google Scholar 

  6. Galyov, E. E., Hakansson, S., Forsberg, A. & Wolf-Watz, H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–732 (1993).

    Article  CAS  Google Scholar 

  7. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  Google Scholar 

  8. Zhou, D., Mooseker, M. & Galán, J. E. Role of the S. Typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095 (1999).

    Article  CAS  Google Scholar 

  9. Lerm, M., Schmidt, G. & Aktories, K. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol. Lett. 188, 1–6 (2000).

    Article  CAS  Google Scholar 

  10. Alouf, J. E. Bacterial protein toxins. An overview. Methods Mol. Biol. 145, 1–26 (2000).

    CAS  PubMed  Google Scholar 

  11. Montecucco, C., Papini, E. & Schiavo, G. Bacterial protein toxins and cell vesicle trafficking. Experimentia 52, 1026–1032 (1996).

    Article  CAS  Google Scholar 

  12. Haag, F. & Koch-Nolte, F. Endogenous relatives of ADP-ribosylating bacterial toxins in mice and men: potential regulators of immune cell function. J. Biol. Regul. Homeost. Agents 12, 53–62 (1998).

    CAS  PubMed  Google Scholar 

  13. Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 322–328 (1999).

    Google Scholar 

  14. Stuckey, J. A. et al. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate. Nature 370, 571–575 (1994).

    Article  CAS  Google Scholar 

  15. Kaniga, K., Uralil, J., Bliska, J. B. & Galán, J. E. A secreted tyrosine phosphatase with modular effector domains encoded by the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641 (1996).

    Article  CAS  Google Scholar 

  16. Persson, C., Carballeira, N., Wolf-Watz, H. & Fallman, M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318 (1997).

    Article  CAS  Google Scholar 

  17. Black, D. S. & Bliska, J. B. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16, 2730–2744 (1997).

    Article  CAS  Google Scholar 

  18. Orth, K. et al. Disruption of signaling by the Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  Google Scholar 

  19. Isberg, R. R. & Leong, J. M. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).

    Article  CAS  Google Scholar 

  20. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  Google Scholar 

  21. Von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).

    Article  CAS  Google Scholar 

  22. Wurtele, M. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Struct. Biol. 8, 23–26 (2001).

    Article  CAS  Google Scholar 

  23. Galán, J. E. & Zhou, D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl Acad. Sci. USA 97, 8754–8761 (2000).

    Article  Google Scholar 

  24. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).

    Article  CAS  Google Scholar 

  25. Nassar, N., Hoffman, G. R., Mannor, D., Clardy, J. C. & Cerione, R. A. Structures of Cde42 bound to the active and catalytically compromised forms of Cdc42GAP. Nature Struct. Biol. 5, 1047–1052 (1998).

    Article  CAS  Google Scholar 

  26. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).

    Article  CAS  Google Scholar 

  27. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

  28. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. 23, 7257–7262 (1998).

    Article  Google Scholar 

  29. Isberg, R. R., Hamburger, Z. & Dersch, P. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2, 793–801 (2000).

    Article  CAS  Google Scholar 

  30. Tran Van Nhieu, G. & Isberg, R. R. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J. Biol. Chem. 266, 24367–24375 (1991).

    CAS  Google Scholar 

  31. Tran Van Nhieu, G. & Isberg, R. R. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 12, 1887–1895 (1993).

    Article  CAS  Google Scholar 

  32. Leahy, D. J. Aukhil, I. & Erickson, H. P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 (1996).

    Article  CAS  Google Scholar 

  33. Reyrat, J. M. et al. Towards deciphering the Helicobacter pylori cytotoxin. Mol. Microbiol. 34, 197–204 (1999).

    Article  CAS  Google Scholar 

  34. Cossart, P. & Lecuit, M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806 (1998).

    Article  CAS  Google Scholar 

  35. Braun, L., Ghebrehiwet, B. & Cosart, P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19, 1458–1466 (2000).

    Article  CAS  Google Scholar 

  36. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InlB-dependent internalization of Listeria is mediated by the met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    Article  CAS  Google Scholar 

  37. Kobe, B. & Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421 (1994).

    Article  CAS  Google Scholar 

  38. Marino, M., Braun, L., Cossart, P. & Ghosh, P. Structure of the InlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen Listeria monocytogenes. Mol. Cell 4, 1063–1072 (1999).

    Article  CAS  Google Scholar 

  39. Hardt, W.-D., Urlaub, H. & Galán, J. E. A target of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl Acad. Science USA 95, 2574–2579 (1998).

    Article  CAS  Google Scholar 

  40. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    Article  CAS  Google Scholar 

  41. Tran Van Nhieu, G., Ben-Ze'ev, A. & Sansonetti, P. J. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717–2729 (1997).

    Article  CAS  Google Scholar 

  42. Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  Google Scholar 

  43. Bourdet-Sicard, R., Egile, C., Sansonetti, P. J. & Tran Van Nhieu, G. Diversion of cytoskeletal processes by Shigella during invasion of epithelial cells. Microbes Infect. 2, 813–819 (2000).

    Article  CAS  Google Scholar 

  44. Goosney, D. L., Gruenheid, S. & Finlay, B. B. Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu. Rev. Cell Dev. Biol. 16, 173–189 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.E.S. was supported by a fellowship of the Cancer Research Fund of the Damon Runyon–Walter Winchell Foundation. This work was supported by Public Health Services grants to J.E.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Galán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, C., Galán, J. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001). https://doi.org/10.1038/35089000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35089000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing