Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis in cancer and other diseases

Abstract

Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases. Concentrated efforts in this area of research are leading to the discovery of a growing number of pro- and anti-angiogenic molecules, some of which are already in clinical trials. The complex interactions among these molecules and how they affect vascular structure and function in different environments are now beginning to be elucidated. This integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases. But owing to several unanswered questions, caution is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaotic and mosaic vessels in tumours.
Figure 2: Role of hypoxia in tumour angiogenesis.

Similar content being viewed by others

References

  1. Goldman, E. The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet 2, 1236–1240 (1907).

    Article  Google Scholar 

  2. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Radiol. 42, 891–899 ( 1939).

    Google Scholar 

  3. Algire, G. H. & Chalkley, H. W. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst. USA 6, 73–85 (1945 ).

    Article  Google Scholar 

  4. Greenblatt, M. & Shubik, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparant chamber technique. J. Natl Cancer Inst. 41, 111–124 (1968).

    CAS  PubMed  Google Scholar 

  5. Ehrmann, R. L. & Knoth, M. Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster cheek pouch studied by light and electron microscopy. J. Natl Cancer Inst. 41, 1329 –1341 (1968).

    CAS  PubMed  Google Scholar 

  6. Folkman, J. in Cancer Medicine (eds Holland, J. F. et al.) 132– 152 (Decker, Ontario, Canada, 2000).

    Google Scholar 

  7. Gullino, P. M. Angiogenesis and oncogenesis. J. Natl Cancer Inst. 61, 639–643 (1978).

    CAS  PubMed  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bouck, N., Stellmach, V. & Hsu, S. C. How tumors become angiogenic. Adv. Cancer Res. 69, 135–174 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kerbel, R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet, P. Controlling the cellular brakes. Nature 401, 657–658 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells . Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Ramanujan, S., Koenig, G. C., Padera, T. P., Stoll, B. R. & Jain, R. K. Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res. 60, 1442– 1448 (2000).

    CAS  PubMed  Google Scholar 

  14. Patan, S., Munn, L. L. & Jain, R. K. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Asahara, T., Kalka, C. & Isner, J. M. Stem cell therapy and gene transfer for regeneration . Gene Ther. 7, 451–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rafii, S. Circulating endothelial precursors: mystery, reality, and promise. J. Clin. Invest. 105, 17–19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380, 435–439 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).

    CAS  PubMed  Google Scholar 

  22. Chang, Y. S. et al. Abundance of neoplastic cells in vessel walls of human tumor xenografts. Proc. Am. Assoc. Cancer Res. (in the press).

  23. Baish, J. W. & Jain, R. K. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).

    CAS  PubMed  Google Scholar 

  24. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177 –182 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Giaccia, A. J. Hypoxic stress proteins: survival of the fittest. Semin. Radiat. Oncol. 6, 46–58 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  26. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  27. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363 –1380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeabiltiy in angiogenesis . Curr. Top. Microbiol. Immunol. 237, 97 –132 (1999).

    CAS  PubMed  Google Scholar 

  30. Jain, R. K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 95, 10820–10825 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukumura, D., Yuan, F., Monsky, W. L., Chen, Y. & Jain, R. K. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Pathol. 151, 679–688 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fidler, I. J. Modulation of the organ microenvironment for treatment of cancer metastasis . J. Natl Cancer Inst. 87, 1588– 1592 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Jain, R. K. & Munn, L. L. Leaky vessels? Call Ang1!. Nature Med. 6, 131–132 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  34. Jain, R. K. et al. Leukocyte-endothelial adhesion and angiogenesis in tumors . Cancer Metastasis Rev. 15, 195– 204 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Eliceiri, B. P. & Cheresh, D. A. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 103 , 1227–1230 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, X. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327 (2000).

    CAS  PubMed  Google Scholar 

  39. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnol. 15, 778–783 (1997).

    Article  CAS  Google Scholar 

  40. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice . Science 276, 1423–1425 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Gohongi, T. et al. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1 . Nature Med. 5, 1203–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hartford, A. C., Gohongi, T., Fukumura, D. & Jain, R. K. Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: potential role of host-tumor interaction. Cancer Res. 60, 2128–2131 (2000).

    CAS  PubMed  Google Scholar 

  46. Perez Atayde, A. R. et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150 , 815–821 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellamy, W. T., Richter, L., Frutiger, Y. & Grogan, T. M. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 59, 728– 733 (1999).

    CAS  PubMed  Google Scholar 

  48. Vikkula, M., Boon, L., Mulliken, J. B. & Olsen, B. R. Molecular basis of vascular anomalies. Trends Cardiovasc. Med. 8, 281–292 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  49. Albini, A. et al. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nature Med. 2, 1371–1375 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  50. Flore, O. et al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Boulton, A. J. & Malik, R. A. Diabetic neuropathy . Med. Clin. North Am. 82, 909– 929 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Semenza, G. L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis . Curr. Opin. Genet. Dev. 8, 588– 594 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity . Nature Med. 1, 1024–1028 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Rabinovitch, M. Pulmonary hypertension: pathophysiology as a basis for clinical decision making . J. Heart Lung Transpl. 18, 1041– 1053 (1999).

    Article  CAS  Google Scholar 

  55. Pinedo, H. M., Verheul, H. M., D'Amato, R. J. & Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 352, 1775–1777 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Seljelid, R., Jozefowski, S. & Sveinbjornsson, B. Tumor stroma. Anticancer Res. 19, 4809–4822 (1999).

    CAS  PubMed  Google Scholar 

  57. Schaper, W. & Ito, W. D. Molecular mechanisms of coronary collateral vessel growth. Circ. Res. 79, 911–919 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med. 5, 1135– 1142 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Carmeliet, P. & Collen, D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system . Thromb. Res. 91, 255– 285 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Buschmann, I. & Schaper, W. The pathophysiology of the collateral circulation (arteriogenesis). J. Pathol. 190, 338–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Silverman, K. J. et al. Angiogenic activity of adipose tissue. Biochem. Biophys. Res. Commun. 153, 347–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Sierra-Honigmann, M. R. et al. Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Isner, J. M. & Asahara, T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231–1236 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495– 502 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nature Med. 6, 49–55 (2000 ).

    Article  CAS  PubMed  Google Scholar 

  67. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485 –490 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Fidler, I. J. & Ellis, L. M. Chemotherapeutic drugs—more really is not better. Nature Med. 6, 500 –502 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Rohan, R. M., Fernandez, A., Udagawa, T., Yuan, J. & D'Amato, R. J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871– 876 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  71. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Med. 4, 923–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Carmeliet, P. & Collen, D. Transgenic mouse models in angiogenesis and cardiovascular disease. J. Pathol. 190, 387–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Jain, R. K., Schlenger, K., Höckel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nature Med. 3, 1203–1208 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  74. Tsuzuki, Y. et al. VEGF modulation by targeting HIF-1alpha/HRE/VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. (in the press).

  75. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553 –6560 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the critical input of C. Mouta Carreira, B. Fenton, D. Fukumura, J. Samson, A. Kadambi, B. Stoll and E. diTomaso in manuscript preparation and L. L. Munn, M. Leunig and A. Vandenhoeck in figure preparation. This work was supported by grants from the NIH, NSF, DOD, ACS, the National Foundation for Cancer Research and the Whitaker Foundation (R.K.J.), and from the VIB, FWO, Biomed and the VLK (P.C.). Owing to space limitations we have cited review articles instead of original references; relevant material that could not be included in this review is available at http://steele.mgh.harvard.edu.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P., Jain, R. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000). https://doi.org/10.1038/35025220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025220

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing