Skip to main content
Log in

Automated pollen recognition using 3D volume images from fluorescence microscopy

  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Identifying and counting of pollen grains in ambient air samples is still a demanding and time-consuming task even for an experienced microscopist. This article describes a technique which may be employed to establish a fully automated system for this task. Based on a 3D volume fluorescence image of a pollen grain taken with a confocal laser scanning microscope, the described system is able to recognize the pollen taxa. The system autonomously extracts all required information for the recognition from a data base with reference objects (self-learning system) and only needs to calculate very general purpose features of the volumetric data sets (so-called gray scale invariants). This allows for easy adaptation of the system to other conditions (e.g., pollen of a special area) or even other objects than pollen (e.g., spores, bacteria etc.) just by exchanging the reference data base. When using a reference data base with the 26 most important German pollen taxa, the recognition rate is 92%. With a special database for allergic purposes recognizing only Corylus, Alnus, Betula, Poaceae, Secale, Artemisia and ``allergically non-relevant'' the recognition rate is 97.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Burges C.J.: 1998, A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121-167.

    Google Scholar 

  • Burkhardt H. and S. Siggelkow: 2001, Invariant features in pattern recognition-fundamentals and applications. In: C. Kotropoulos and I. Pitas (eds), Nonlinear Model-Based Image/Video Processing and Analysis. John Wiley & Sons, pp. 269-307.

  • France I., Duller A., Lamb H. and Duller G.: 1997, A comparative study of model based and neural network based approaches to automatic pollen identification. In: British Machine Vision Conference, pp. 340-349.

  • Jain A.K.: 1989, Fundamentals of Digital Image Processing. Prentice-Hall.

  • Joachims T.: 2001, SVMLight, Implementation of Support Vector Machines in C. http://ais.gmd.de/~thorsten/svm_light/.

  • Langford M., Taylor G. and Flenley J.: 1986, The application of texture analysis for automated pollen identification. In: Proceedings of a Conference on Identification and Pattern Recognition. Toulouse, Univ. Paul Sabatini, pp. 729-739

    Google Scholar 

  • Langford M., Taylor G. and Flenley J.: 1990, Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64, 197-203.

    Google Scholar 

  • Mazière M.: 1997, Étude de faisabilité pour la reconnaissance automatique de grains de pollen. http://www-sop.inria.fr/ orion/Publications/index.html. Rapport de DEA, Université de Nice-Sophia Antipolis.

  • McCrone W. and Delly J.: 1973, The Particle Atlas, Vol. IV. Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Ronneberger O.: 2001, Homepage of the Project "Automatic Identification and Counting of Airborne Pollen Grains'. http:// bienemaja.informatik.uni-freiburg.de/pollen.

  • Schael M. and Siggelkow S.: 2000, Invariant grey-scale features for 3D sensor-data. In: Proceedings of the International Conference on Pattern Recognition (ICPR2000). Barcelona, Spain, pp. 531-535.

  • Schulz-Mirbach H.: 1995, Invariant features for gray scale images. In: G. Sagerer, S. Posch and F. Kummert (eds), 17. DAGMSymposium "Mustererkennung', Informatik aktuell. Springer, pp. 1-14.

  • Siggelkow S. and Schael M,: 1999, Fast estimation of invariant features. In: W. Förstner, J. Buhmann, A. Faber and P. Faber (eds), Mustererkennung, DAGM 1999. Bonn, Springer.

    Google Scholar 

  • Vapnik V.N.: 1995, The Nature of Statistical Learning Theory. Springer.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronneberger, O., Schultz, E. & Burkhardt, H. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18, 107–115 (2002). https://doi.org/10.1023/A:1020623724584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020623724584

Navigation