Skip to main content
Log in

Environmental Estrogen-Like Chemicals and Hydroxyl Radicals Induced by MPTP in the Striatum: A Review

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxygen free radical formation has been implicated in lesions caused by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and iron. Although MPTP produces a parkinsonian syndrome after its conversion to 1-methyl-4-phenylpyridine (MPP+) by type B monoamine oxidase (MAO) in the brain, the etiology of this disease remains obscure. This review focuses on the role of an environmental neurotoxin chemically related to MPP+-induced free radical generation in the pathogenesis of Parkinson's disease. Environmental-like chemicals, such as para-nonylphenol or bisphenol A, significantly stimulated hydroxyl radical (•OH) formation in the striatum. Allopurinol, a xanthine oxidase inhibitor, prevents para-nonylphenol and MPP+-induced •OH generation. Tamoxifen, a synthetic nonsteroidal antiestrogen, suppressed the •OH generation via dopamine efflux induced by MPP+. These results confirm that free radical production might make a major contribution at certain stages in the progression of the injury. Such findings may be useful in elucidating the actual mechanism of free radical formation in the pathogenesis of neurodegenerative brain disorders, including Parkinson's disease and traumatic brain injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Colborn, T. 1995. Environmental oestrogen: health implications for humans and wildlife. Environ. Health Persp. 103:135–136.

    Google Scholar 

  2. Safe, S. H. 1995. Do environmental estrogens play a role in development of breast cancer in women and male reproductive problems? Hum. Ecol. Risk Assess. 1:17–23.

    Google Scholar 

  3. Kuppers, E. and Beyer, C. 1999. Expression of estrogen receptor-alpha and beta mRNA in the developing and adult mouse striatum. Neurosci. Lett. 276:95–98.

    Google Scholar 

  4. Lammers, C. H., D'Souza, U., Qin, Z. H., Lee, S. H., Yajima, S., and Mouradian, M. M. 1999. Regulation of striatal dopamine receptors by estrogen. Synapse 34:222–227.

    Google Scholar 

  5. Zhou, Y. and Dorsa, D. M. 1994. Estrogen rapidly induces c-jun immunoreactivity in rat striatum. Horm. Behav. 28:376–382.

    Google Scholar 

  6. Mizuno, Y., Hattori, N., and Mori, H. 1999. Genetics of Parkinson's disease. Biomed. Pharmacother. 53:109–116.

    Google Scholar 

  7. Mochizuki, H., Goto, K., Mori, H., and Mizuno, Y. 1996. Histochemical detection of apoptosis in Parkinson's disease. J. Neurol. Sci. 137:120–123.

    Google Scholar 

  8. Chiueh, C. C., Wu, R.-M., Mohanakumar, K. P., Sternberger, L. M., Krishna, G., Obata, T., and Murphy, D. L. 1994. In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann. NY Acad. Sci. 738:25–36.

    Google Scholar 

  9. Gerlach, M., Ben-Shachar, D., Riederer, P., and Youdim, M. B. H. 1994. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63:793–807.

    Google Scholar 

  10. Chiba, K., Trevor, A., and Castagnoli, N. 1984. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120:574–578.

    Google Scholar 

  11. Markey, S. P., Johannessen, J. N., Chiueh, C. C., Burns, R. S., and Herkenham, M. A. 1984. Intraneuronal generation of a pyridinium metabolite may cause drug-induced Parkinsonism. Nature 311:464–467.

    Google Scholar 

  12. Kopin, I. J. and Markey, S. P. 1988. MPTP toxicity: implications for research in Parkinson's disease. Annu. Rev. Neurosci. 11:81–96.

    Google Scholar 

  13. Dunnett, S. B. and Bjorklund, A. 1999. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature 399:A32–39.

    Google Scholar 

  14. Olanow, C. W. and Tatton, W. G. 1999. Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22:123–144.

    Google Scholar 

  15. Chiueh, C. C., Krishna, G., Tulsi, P., Obata, T., Lang, K., Huang, S.-J., and Murphy, D. L. 1992. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP1. Free Radic. Biol. Med. 13:581–583.

    Google Scholar 

  16. Kitamura, Y., Shimohama, S., Akaike, A., and Taniguchi, T. 2000. The parkinsonian models: invertebrates to mammals. Jpn. J. Pharmacol. 84:237–243.

    Google Scholar 

  17. Obata, T. 1999. Reserpine prevent hydroxyl radical formation by MPP1 in rat striatum. Brain Res. 828:68–73.

    Google Scholar 

  18. Maher, P. and Davis, J. B. 1996. The role of monoamine metabolism in oxidative glutamate toxicity. J. Neurosci. 16:6394–6401.

    Google Scholar 

  19. Tan, S., Wood, M., and Maher, P. 1998. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95–105.

    Google Scholar 

  20. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 2:381–389.

    Google Scholar 

  21. Chiueh, C. C., Miyake, H., and Peng, M. T. 1993. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv. Neurol. 60:251–258.

    Google Scholar 

  22. Floyd, R. A., Watson, J. J., and Wong, P. K. 1984. Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J. Biochem. Biophys. Meth. 10:221–235.

    Google Scholar 

  23. Radzik, D. M., Roston, D. A., and Kissinger, P. T. 1983. Determination of hydroxylated aromatic compounds produced via superoxide-dependent formation of hydroxyl radicals by liquid chromatography/electrochemistry. Anal. Biochem. 131:458–464.

    Google Scholar 

  24. Cao, W., Carney, J. M., Duchon, A., Floyd, R. A., and Chevion, M. 1988. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci. Lett. 88:233–238.

    Google Scholar 

  25. Powell, S. R. and Hall, D. 1990. Use of salicylate as a probe for •OH formation in isolated ischemic rat hearts. Free Rad. Biol. Med. 9:133–141.

    Google Scholar 

  26. Halliwell, B., Kaur, H., and Ingleman-Sundberg, M. 1991. Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Rad. Biol. Med. 10:439–441.

    Google Scholar 

  27. Obata, T. and Chiueh, C. C. 1992. In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+ and MPP+. J. Neural. Transm. [GenSect] 89:139–145.

    Google Scholar 

  28. Miyake, H. and Chiueh, C. C. 1989. Effects of MPP+ on the release of serotonin and 5–hydroxyindole acetic acid from rat striatum in vivo. Eur. J. Pharmacol. 166:49–55.

    Google Scholar 

  29. Ozaki, N., Nakahara, D., Kaneda, N., Kiuchi, K., Okada, T., Kasahara, Y., and Nagatsu, T. 1987. Acute effects of 1–methyl-4–phenylpyridinium ion (MPP+) on dopamine and serotonin metabolism in rat striatum as assayed in vivo by a micro-dialysis technique. J. Neural. Transm. 70:241–250.

    Google Scholar 

  30. Rollema, H., Kuhr, W. G., Kranenborg, G., De, Vries, J., and Van den Berg, C. 1988. MPP+-induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J. Pharmacol. Exp. Ther. 245:858–866.

    Google Scholar 

  31. Graham, D. C. 1984. Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson's disease. Neurotoxicology 5:83–96.

    Google Scholar 

  32. Fornstedt, B., Pileblad, E., and Carlsson, A. 1990. In vivo autoxidation of dopamine in guinea pig striatum increases with age. J. Neurochem. 55:655–659.

    Google Scholar 

  33. Ben-Shachar, D., Riederer, P., and Youdim, M. B. H. 1991. Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 57:1609–1614.

    Google Scholar 

  34. Fornstedt, B., Burn, A., Rosengren, E., and Carlson, A. 1989. The apparent autooxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J. Neural. Tansm. [P-DSect] 1:279–295.

    Google Scholar 

  35. Cass, W. A. 1997. Decreases in evoked overflow of dopamine in rat striatum after neurotoxic doses of methamphetamine. J. Pharmacol. Exp. Ther. 280:105–113.

    Google Scholar 

  36. Finnegan, K. T. and Taraska, T. 1996. Effects of glutamate antagonists on methamphetamine and 3,4–methylenedioxy-methamphetamine-induced striatal dopamine release in vivo. J. Neurochem. 66:1949–1958.

    Google Scholar 

  37. Obata, T. and Yamanaka, Y. 2000. Methamphetamine enhances 1–methyl-4–phenylpyridinium ion-induced hydroxyl radical generation in the rat striatum. Neurosci. Lett. 292:54–56.

    Google Scholar 

  38. Riederer, P., Sofic, E., Rausch, W.-D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H. 1989. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52:515–520.

    Google Scholar 

  39. Dedon, P. C., Plastaras, J. P., Rouzer, C. A., and Marnett, L. J. 1998. Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc. Natl. Acad. Sci. USA 95:11113–11116.

    Google Scholar 

  40. Perry, T. L. and Yong, V. W. 1986. Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci. Lett. 67:269–274.

    Google Scholar 

  41. Kinemuchi, H., Fowler, C. J., and Tipton, K. F. 1987. The neurotoxicity of 1–methyl-4–phenyl-1,2,3,6–tetrahydropyridine (MPTP) and its relevance to parkinson disease. Neurochem. Int. 11:359–373.

    Google Scholar 

  42. Di Monte, D. A., Royland, J. E., Anderson, A., Castagnoli, K., Castagnoli, Jr. N., and Langston, J. W. 1997. Inhibition of monoamine oxidase contributes to the protective effect of 7–nitroindazole against MPTP neurotoxicity. J. Neurochem. 69:1771–1773.

    Google Scholar 

  43. Mytilineou, C., Leonardi, E. K., Radcliffe, P., Heinonen, E. H., Han, S. K., Werner, P., Cohen, G., and Olanow, C. W. 1998. Deprenyl and desmethylselegiline protect mesencephalic neurons from toxicity induced by glutathione depletion. J. Pharmacol. Exp. Ther. 284:700–706.

    Google Scholar 

  44. Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., and Greenamyre, J. T. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3:1301–1306.

    Google Scholar 

  45. Spina, M. B. and Cohen, G. J. 1989. Dopamine turnover and glutathione oxidation: implications for Parkinson's disease. Proc. Natl. Acad. Sci. USA 86:1398–1400.

    Google Scholar 

  46. Pilas, B., Sarna, T., Kalyanaraman, B., and Swartz, H. M. 1988. The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Rad. Biol. Med. 4:285–293.

    Google Scholar 

  47. Roy, D., Palangt, M., Chen, C.-W., Thomas, R. D., Colerangle, J., Atkinson, A., and Yan, Z.-J. 1997. Biochemical and molecular changes at the cellular level in response to exposure to environmental esrogen-like chemicals. J. Toxicol. Environ. Health 50:1–29.

    Google Scholar 

  48. Haupt, D. E. 1983. U.S. Detergent surfactant trends: 1980's. Tenside Detergents 20:332–337.

    Google Scholar 

  49. Obata, T. and Kubota, S. 2000. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum. Neurosci. Lett. 296:41–44.

    Google Scholar 

  50. Roy, D. and Liehr, J. G. 1999. Estrogen, DNA damage and mutations. Mutat. Res. 424:107–115.

    Google Scholar 

  51. Hirsch, E. C., Brandel, J.-P., Galle, P., Javoy-Agid, F., and Agid, Y. 1991. Iron (II) and aluminium increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J. Neurochem. 56:446–451.

    Google Scholar 

  52. Obata, T., Kubota, S., and Yamanaka, Y. 2001. Allopurinol suppresses para-nonylphenol and 1–methyl-4–phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Neurosci. Lett. 306:9–12.

    Google Scholar 

  53. Birge, S. J. 1997. The role of estrogen in the treatment of Alzheimer's disease. Neurology 48:S36–41.

    Google Scholar 

  54. Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R. 1996. Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. Lancet 348:429–432.

    Google Scholar 

  55. Arvin, M., Fedorkova, L., Disshon, K. A., Dluzen, D. E., and Leipheimer, R. E. 2000. Estrogen modulates responses of striatal dopamine neurons to MPP (1): evaluations using in vitro and in vivo techniques. Brain Res. 872:160–171.

    Google Scholar 

  56. Kedar, R. P., Bourne, T. H., Collins, W. P., Ashley, S. E., Cosgrove, D. O., and Campbell, S. 1994. Effects of tamoxifen on uterus and ovaries of postmenopausal women in a randomised breast cancer prevention trial. Lancet 343:1318–1321.

    Google Scholar 

  57. Thangaraju, M., Vijaylakshmi, T., and Sachdanandam, P. 1994. Effect of tamoxifen on lipid peroxide and antioxidative system in postmenopausal women with breast cancer. Cancer 74:78–82.

    Google Scholar 

  58. Wiseman, H., Cannon, M., Arnstein, H. R. V., and Halliwell, B. 1993. Enhancement by tamoxifen of the membrane antioxidant action of the yeast membrane sterol ergosterol: relevance to the antiyeast and anticancer action of tamoxifen. Biochim. Biophys. Acta 1181:201–206.

    Google Scholar 

  59. Renodon, A., Boucher, J. L., Sari, M. A., Delaforge, M., Quazzani, J., and Mansuy, D. 1997. Strong inhibition of neuronal nitric oxide synthase by the calmodulin antagonist and anti-estrogen drug tamoxifen. Biochem. Pharmacol. 54:1109–1114.

    Google Scholar 

  60. Wiseman, H., Cannon, M., Arnstein, H. R. V., and Barlow, D. J. 1992. The structural mimicry of membrane sterols by tamoxifen: evidence from cholesterol coefficients and molecular-modelling for its action as a membrane anti-oxidant and an anti-cancer agent. Biochim. Biophys. Acta 1138:197–202.

    Google Scholar 

  61. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620–1624.

    Google Scholar 

  62. Obata, T. and Yamanaka, Y. 2001. Nitric oxide enhances MPP1–induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum. Brain Res. 902:223–228.

    Google Scholar 

  63. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481–487.

    Google Scholar 

  64. Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. F. 1996. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat. Med. 2:1017–1021.

    Google Scholar 

  65. Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. 1996. Role of neuronal nitric oxide in 1–methyl-4–phenyl-1,2,3,6–tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93:4565–4571.

    Google Scholar 

  66. Matthews, R. T., Yang, L., and Beal, M. F. 1997. S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity. Exp. Neurol. 143: 282–286.

    Google Scholar 

  67. Osborne, K., Zhao, H., and Fuqua, A. W. 2000. Selective estrogen receptor modulators: structure, function, and clinical use. J. Clin. Oncol. 18:3172–3186.

    Google Scholar 

  68. Obata, T. and Kubota, S. 2001. Protective effect of tamoxifen on 1–methyl-4–phenylpyridine-induced hydroxyl radical generation in the rat striatum. Neurosci. Lett. 308:87–90.

    Google Scholar 

  69. Klivenyi, P., Andreassen, O. A., Ferrante, R. J., Dedeoglu, A., Mueller, G., Lancelot, E., Bogdanov, M., Andersen, J. K., Jiang, D., and Beal, M. F. 2000. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3–nitropropionic acid, and 1–methyl-4–phenyl-1,2,5,6–tetrahydropyridine. J. Neurosci. 20:1–7.

    Google Scholar 

  70. Poth, M. M., Heath, R. G., and Ward, M. 1975. Angiotensin-converting enzyme in human brain. J. Neurochem. 25:83–85.

    Google Scholar 

  71. Chai, S. Y., Mendelsohn, F. A., and Paxinos, G. 1987. Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience 20:615–627.

    Google Scholar 

  72. Konings, C. H., Kuiper, M. A., Bergmans, P. L., Grijpma, A. M., van Kamp, G. J., and Wolters, E. C. 1994. Increased angiotensin converting enzyme activity in cerebrospinal fluid of treated patients with Parkinson's disease. Clin. Chim. Acta 231:101–106.

    Google Scholar 

  73. Zubenko, G. S., Volicer, L., Direnfeld, L. K., Freeman, M., Langlais, P. J., and Nixon, R. A. 1985. Cerebrospinal fluid levels of angiotensin-converting enzyme in Alzheimer's disease, Parkinson's disease and progressive supranuclear palsy. Brain Res. 328:215–221.

    Google Scholar 

  74. Brown, D. C., Steward, L. J., Ge, J., and Barnes, N. M. 1996. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br. J. Pharmacol. 118:414–420.

    Google Scholar 

  75. Jenkins, T. A., Allen, A. M., Chai, S. Y., MacGregor, D. P., Paxinos, G., and Mendelsohn, F. A. 1996. Interactions of angiotensin II with central dopamine. Adv. Exp. Med. Biol. 396:93–103.

    Google Scholar 

  76. Jenkins, T. A., Wong, J. Y., Howells, D. W., Mendelsohn, F. A., and Chai. S. Y. 1999. Effect of chronic angiotensin-converting enzyme inhibition on striatal dopamine content in the MPTP-treated mouse. J. Neurochem. 73:214–219.

    Google Scholar 

  77. Juggi, J. S., Koenig-Berard, E., and Van Gilst, W. H. 1993. Cardioprotection by angiotensin-converting enzyme (ACE) inhibitors. Can. J. Cardiol. 9:336–352.

    Google Scholar 

  78. Obata, T., Kubota, S., and Yamanaka, Y. 2002. Protective effect of histidine on para-nonylphenol enhanced hydroxyl free radical generation induced by 1–methyl-4–phenylpyridinium ion (MPP+) in rat striatum. Biochim. Biophys. Acta (in press).

  79. Halliwell, B. 1992. Reactive oxygen species and central nervous system. J. Neurochem. 59:1609–1623.

    Google Scholar 

  80. Hearse, D. J., Kusama, Y., and Bernier, M. 1989. Rapid electrophysiological changes leading to arrhythmia in the aerobic rat heart: photosensitivization studies with rose bengal-derived reactive oxygen intermediates. Circ. Res. 65:146–153.

    Google Scholar 

  81. Kalyanaraman, B., Feix, J. B., Sieber, F., Thomas, J. P., and Girotti, A. W. 1987. Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc. Natl. Acad. Sci. USA 84:2999–3003.

    Google Scholar 

  82. Wefers, H., Schulte-Frohlinde, D., and Sies, H. 1987. Loss of transforming activity of plasmid DNA (pBR322) in E. coli. caused by singlet molecular oxygen. FEBS Lett. 211:49–52.

    Google Scholar 

  83. Kukreja, R. C., Loesser, K. E., Kearns, A. A., Naseem, S. A. and Hess, M. L. 1993. Protective effects of histidine during ischemia-reperfusion in isolated perfused rat hearts. Am. J. Physiol. 264:H1370–1381.

    Google Scholar 

  84. Suzuki, Y. and Sudo, J. 1990. Lipid peroxidation and generations of oxygen radicals induced by cephaloridine in renal cortical microsomes of rats. Jpn. J. Pharmacol. 52:233–243.

    Google Scholar 

  85. Takemura, G., Onodera, T., and Ashraf, M. 1992. Quantification of hydroxyl radical and its lack of relevance to myocardial injury during early reperfusion after graded ischemia in rat hearts. Circ. Res. 71:96–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obata, T. Environmental Estrogen-Like Chemicals and Hydroxyl Radicals Induced by MPTP in the Striatum: A Review. Neurochem Res 27, 423–431 (2002). https://doi.org/10.1023/A:1015556015299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015556015299

Navigation