Skip to main content
Log in

Mechanism of Action of Ca2+ Sensitizers—Update 2001

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Ca2+ sensitizers act on the central mechanism (Ca2+ binding affinity of troponin C) and/or downstream mechanisms (thin filament regulation of actin and direct action on crossbridge cycling) of cardiac E–C coupling. Ca2+ sensitizers have mechanistic and energetic advantages over the agents that act through the upstream mechanism (intracellular Ca2+ mobilization). Ca2+ sensitizers and the agents that act through cyclic AMP-mediated signaling process have been postulated to belong to different classes, however, recent experimental findings revealed that certain Ca2+ sensitizers, such as levosimendan, OR 1896 and UD-CG 212 Cl, require cyclic AMP-mediated signaling for induction of the Ca2+ sensitizing effect. No clinically available agents act primarily via Ca2+ sensitization, but the positive inotropic effect of pimobendan and levosimendan is partly due to an increase in myofilament Ca2+ sensitivity. These agents are the hybrid of Ca2+ sensitizer and PDE III inhibitor. The extent of contribution of Ca2+ sensitizing effect of these agents to the clinical effectiveness to improve the hemodynamics in patients with heart failure is uncertain. Nevertheless pieces of evidence have been accumulating that these agents with Ca2+ sensitizing effect are clinically more effective than the agents that act purely via the upstream mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz AM. Heart Failure-Pathophysiology, Molecular Biology, and Clinical Management, 1st ed. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  2. Krum H. New and emerging pharmacological strategies in the management of chronic heart failure. Curr Opinion Pharmacol 2001; 1: 126-133.

    Google Scholar 

  3. Farah AE, Alousi AA, Schwarz RP, Jr. Positive inotropic agents. Ann Rev Pharmacol Toxicol 1984; 24: 275-328.

    Google Scholar 

  4. Scholz H, Meyer W. Phosphodiesterase-inhibiting properties of newer inotropic agents. Circulation 1986; 73: III99-III108.

    Google Scholar 

  5. Endoh M. The effect of various drugs on the myocardial inotropic response. Gen Pharmacol 1995; 26: 1-31.

    Google Scholar 

  6. Blinks JR, Endoh M. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 1986; 73: III85-III98.

    Google Scholar 

  7. Endoh M. Changes in intracellular Ca2+ mobilization and Ca2+ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells. Jpn Heart J 1998; 39: 1-44.

    Google Scholar 

  8. Endoh M, Hori M. Basic pharmacology and clinical application of new positive inotropic agents. Drugs Today 1993; 29: 29-56.

    Google Scholar 

  9. Endoh M. Regulation of myocardial contractility by a downstream mechanism. Circ Res 1998; 83: 230-232.

    Google Scholar 

  10. Lee JA, Allen DG. Calcium sensitisers: mechanisms of action and potential usefulness as inotropes. Cardiovasc Res 1997; 36: 10-20.

    Google Scholar 

  11. Johnson JD, Collins JH, Robertson SP, Potter JD. A fluorescent probe study of Ca2+ binding to the Ca2+-specific sites of cardiac troponin and troponin C. J Biol Chem 1980; 255: 9635-9640.

    Google Scholar 

  12. Li G, Martin AF, Solaro RJ. Localization of regions of troponin I important in deactivation of cardiac myofilaments by acidic pH. J Mol Cell Cardiol 2001; 33: 1309-1320.

    Google Scholar 

  13. Sata M, Sugiura S, Yamashita H, Momomura S, Serizawa T. Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro. Circ Res 1993; 73: 696-704.

    Google Scholar 

  14. Solaro RJ, Gambassi G, Warshaw DM, et al. Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ Res 1993; 73: 981-990.

    Google Scholar 

  15. Endoh M. Mechanisms of novel cardiotonic agents developed to treat the failing heart syndrome. In: Sasayama S, ed. New Horizons for Failing Heart Syndrome. Tokyo: Springer, 1996: 187-208.

    Google Scholar 

  16. Solaro RJ, Rarick HM. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998; 83: 471-480.

    Google Scholar 

  17. Westfall MV, Turner I, Albayya FP, Metzger JM. Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A. Am J Physiol 2001; 280: C324-C332.

    Google Scholar 

  18. Li MX, Spyracopoulos L, Beier N, Putkey JA, Sykes BD. Interaction of cardiac troponin C with Ca2+ sensitizer EMD 57033 and cardiac troponin I inhibitory peptide. Biochemistry 2000; 39: 8782-8790.

    Google Scholar 

  19. Kurihara S, Komukai K. Cross-bridge-dependent changes in the intracellular Ca2+ concentration in mammalian cardiac muscles. Jpn Heart J 1996; 37: 143-152.

    Google Scholar 

  20. Westfall MV, Albayya FP, Turner II, Metzger JM. Chimera analysis of troponin I domains that influence Ca2+-activated myofilament tension in adult cardiac myocytes. Circ Res 2000; 86: 470-477.

    Google Scholar 

  21. Endoh M, Blinks JR. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha-and beta-adrenoceptors. Circ Res 1988; 62: 247-265.

    Google Scholar 

  22. Endoh M. Dual inhibition of myocardial function through muscarinic and adenosine receptors in the mammalian heart. J Appl Cardiol 1987; 2: 213-230.

    Google Scholar 

  23. Sato S, Talukder MA, Sugawara H, Sawada H, Endoh M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-l-loaded single ventricular cardiomyocytes of the rabbit. J Mol Cell Cardiol 1998; 30: 1115-1128.

    Google Scholar 

  24. Endoh M, Yanagisawa T, Morita T, Taira N. Differential effects of sulmazole (AR-L 115 BS) on contractile force and cyclic AMP levels in canine ventricular muscle: comparison with MDL 17,043. J Pharmacol Exp Ther 1985; 234: 267-273.

    Google Scholar 

  25. Sugawara H, Endoh M. (—)-Enantiomer EMD 57439 antagonizes the Ca2+ sensitizing effect of (+)-enantiomer EMD 57033 on diastolic function but not on systolic function in rabbit ventricular cardiomyocytes. Jpn J Pharmacol 1999; 80: 55-65.

    Google Scholar 

  26. Kawabata Y, Endoh M. Effects of the positive inotropic agent Org 30029 on developed force and aequorin light transients in intact canine ventricular myocardium. Circ Res 1993; 72: 597-606.

    Google Scholar 

  27. Watanabe A, Tomoike H, Endoh M. Ca2+ sensitizer Org-30029 reverses acidosis-and BDM-induced contractile depression in canine myocardium. Am J Physiol 1996; 271: H1829-H1839.

    Google Scholar 

  28. Zimmermann N, Boknik P, Gams E, et al. Positive inotropic effects of the calcium sensitizer CGP 48506 in guinea pig myocardium. J Pharmacol Exp Ther 1996; 277: 1572-1578.

    Google Scholar 

  29. Neumann J, Eschenhagen T, Grupp IL, et al. Positive inotropic effects of the calcium sensitizer CGP 48506 in failing human myocardium. J Pharmacol Exp Ther 1996; 277: 1579-1585.

    Google Scholar 

  30. Kitada Y, Narimatsu A, Suzuki R, Endoh M, Taira N. Does the positive inotropic action of a novel cardiotonic agent, MCI-154, involve mechanisms other than cyclic AMP? J Pharmacol Exp Ther 1987; 243: 639-645.

    Google Scholar 

  31. Endoh M, Shibasaki T, Satoh H, Norota I, Ishihata A. Different mechanisms involved in the positive inotropic effects of benzimidazole derivative UD-CG 115 BS (pimobendan) and its demethylated metabolite UD-CG 212 Cl in canine ventricular myocardium. J Cardiovasc Pharmacol 1991; 17: 365-375.

    Google Scholar 

  32. Boknik P, Neumann J, Kaspareit G, et al. Mechanisms of the contractile effects of levosimendan in the mammalian heart. J Pharmacol Exp Ther 1997; 280: 277-283.

    Google Scholar 

  33. Takahashi R, Talukder MA, Endoh M. Inotropic effects of OR-1896, an active metabolite of levosimendan, on canine ventricular myocardium. Eur J Pharmacol 2000; 400: 103-112.

    Google Scholar 

  34. Takahashi R, Talukder MA, Endoh M. Effects of OR-1896, an active metabolite of levosimendan, on contractile force and aequorin light transients in intact rabbit ventricular myocardium. J Cardiovasc Pharmacol 2000; 36: 118-125.

    Google Scholar 

  35. Takahashi R, Endoh M. Increase in myofibrillar Ca2+ sensitivity induced by UD-CG 212 Cl, an active metabolite of pimobendan, in canine ventricular myocardium. J Cardiovasc Pharmacol 2001; 37: 209-218.

    Google Scholar 

  36. Endoh M, Yanagisawa T, Taira N, Blinks JR. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 1986; 73: III117-III133.

    Google Scholar 

  37. Endoh M. Calcium signaling and pharmacology of cardiotonic agents. In: LeWinter MM, Suga H, Watkin MW, eds. Cardiac Energetics: From Emax to Pressure-Volume Area. Boston: Kluwer Academic Publishers, 1995: 171-199.

    Google Scholar 

  38. Haikala H, Kaheinen P, Levijoki J, Linden IB. The role of cAMP-and cGMP-dependent protein kinases in the cardiac actions of the new calcium sensitizer, levosimendan. Cardiovasc Res 1997; 34: 536-546.

    Google Scholar 

  39. Winegrad S. Cardiac myosin binding protein C. Circ Res 1999; 84: 1117-1126.

    Google Scholar 

  40. Haikala H, Nissinen E, Etemadzadeh E, Levijoki J, Linden IB. Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 1995; 25: 794-801.

    Google Scholar 

  41. Sugawara H, Endoh M. Anovel cardiotonic agent SCH00013 acts as a Ca++ sensitizer with no chronotropic activity in mammalian cardiac muscle. J Pharmacol Exp Ther 1998; 287: 214-222.

    Google Scholar 

  42. Hajjar RJ, Schmidt U, Helm P, Gwathmey JK. Ca++ sensitizers impair cardiac relaxation in failing human myocardium. J Pharmacol Exp Ther 1997; 280: 247-254.

    Google Scholar 

  43. Lee JA, Allen DG. EMD53998 sensitizes the contractile proteins to calcium in intact ferret ventricular muscle. Circ Res 1991; 69: 927-936.

    Google Scholar 

  44. Ishisu R, Abe Y, Onishi K, Sekioka K, Nakano T. Differential effects of EMD-53998 on calcium-pressure relationship in normal and ischemic guinea pig heart. Am J Physiol 1996; 271: H311-H319.

    Google Scholar 

  45. Higashiyama A, Watkins MW, Chen Z, LeWinter MM. Effects of EMD 57033 on contraction and relaxation in isolated rabbit hearts. Circulation 1995; 92: 3094-3104.

    Google Scholar 

  46. Tobias AH, Slinker BK, Kirkpatrick RD, Campbell KB. Functional effects of EMD-57033 in isovolumically beating isolated rabbit hearts. Am J Physiol 1996; 271: H51-H58.

    Google Scholar 

  47. Haeusler G, Jonas R, Minck KO, et al. In vivo evidence of positive inotropism of EMD 57033 through calcium sensitization. J Cardiovasc Pharmacol 1997; 29: 647-655.

    Google Scholar 

  48. Gambassi G, Capogrossi MC, Klockow M, Lakatta EG. Enantiomeric dissection of the effects of the inotropic agent, EMD 53998, in single cardiac myocytes. Am J Physiol 1993; 264: H728-H738.

    Google Scholar 

  49. Tsutsui H, Kinugawa S, Ide T, et al. Positive inotropic effects of calcium sensitizers on normal and failing cardiac myocytes. J Cardiovasc Pharmacol 2001; 37: 16-24.

    Google Scholar 

  50. Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden IB. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol 1995; 27: 1859-1866.

    Google Scholar 

  51. Lee JA, Shah N, White J, Orchard CH. A novel thiadiazinone derivative fully reverses acidosis-induced depression of force in cardiac muscle by a calcium-sensitizing effect. Clin Sci 1993; 84: 141-144.

    Google Scholar 

  52. Sugawara H, Sakurai K, Atsumi H, Nakada S, Tomoike H, Endoh M. Differential alteration of cardiotonic effects of EMD57033 and β-adrenoceptor agonists in volume-overload rabbit ventricular myocytes. J Cardiac Fail 2000; 6: 338-349.

    Google Scholar 

  53. Hagemeijer F. Calcium sensitization with pimobendan: pharmacology, haemodynamic improvement, and sudden death in patients with chronic congestive heart failure. Eur Heart J 1993; 14: 551-566.

    Google Scholar 

  54. Honerjäager P, Heiss A, Schafer KM, Schonsteiner G, Reiter M. UD-CG 115-a cardiotonic pyridazinone which elevates cyclic AMP and prolongs the action potential in guinea-pig papillary muscle. Naunyn Schmiedeberg's Arch Pharmacol 1984; 325: 259-269.

    Google Scholar 

  55. Fujino K, Sperelakis N, Solaro RJ. Sensitization of dog and guinea pig heart myofilaments to Ca2+ activation and the inotropic effect of pimobendan: comparison with milrinone. Circ Res 1988; 63: 911-922.

    Google Scholar 

  56. Scheld HH, Fritsche R, Schlepper M, van Meel JC. Pimobendan increases calcium sensitivity of skinned human papillary muscle fibers. J Clin Pharmacol 1989; 29: 360-366.

    Google Scholar 

  57. Böhm M, Morano I, Pieske B, et al. Contribution of cAMPphosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium. Circ Res 1991; 68: 689-701.

    Google Scholar 

  58. Matsui K, Kiyosue T, Wang JC, Dohi K, Arita M. Effects of pimobendan on the L-type Ca2+ current and developed tension in guinea-pig ventricular myocytes and papillary muscle: comparison with IBMX, milrinone, and cilostazol. Cardiovasc Drugs Ther 1999; 13: 105-113.

    Google Scholar 

  59. Sata M, Sugiura S, Yamashita H, Aoyagi T, Momomura S, Serizawa T. Pimobendan directly sensitizes reconstituted thin filament to slide on cardiac myosin. Eur J Pharmacol 1995; 290: 55-59.

    Google Scholar 

  60. Ohte N, Cheng CP, Suzuki M, Little WC. The cardiac effects of pimobendan (but not amrinone) are preserved at rest and during exercise in conscious dogs with pacing-induced heart failure. J Pharmacol Exp Ther 1997; 282: 23-31.

    Google Scholar 

  61. Lubsen J, Just H, Hjalmarsson AC, et al. Effect of pimobendan on exercise capacity in patients with heart failure: main results from the Pimobendan in Congestive Heart Failure (PICO) trial. Heart 1996; 76: 223-231.

    Google Scholar 

  62. Mathew L, Katz SD. Calcium sensitising agents in heart failure. Drugs Aging 1998; 12: 191-204.

    Google Scholar 

  63. Ishiki R, Ishihara T, Izawa H, Nagata K, Hirai M, Yokota M. Acute effects of a single low oral dose of pimobendan on left ventricular systolic and diastolic function in patients with congestive heart failure. J Cardiovasc Pharmacol 2000; 35: 897-905.

    Google Scholar 

  64. Edes I, Kiss E, Kitada Y, et al. Effects of levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 1995; 77: 107-113.

    Google Scholar 

  65. Levijoki J, Pollesello P, Kaivola J, et al. Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: structure-response and binding analysis with analogs of levosimendan. J Mol Cell Cardiol 2000; 32: 479-491.

    Google Scholar 

  66. Haikala H, Levijoki J, Linden IB. Troponin C-mediated calcium sensitization by levosimendan accelerates the proportional development of isometric tension. J Mol Cell Cardiol 1995; 27: 2155-2165.

    Google Scholar 

  67. Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier LS, Just H. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation 1998; 98: 2141-2147.

    Google Scholar 

  68. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. The novel calcium sensitizer levosimendan activates the ATPsensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther 1997; 283: 375-383.

    Google Scholar 

  69. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur J Pharmacol 1997; 333: 249-259.

    Google Scholar 

  70. Du Toit EF, Muller CA, McCarthy J, Opie LH. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther 1999; 290: 505-514.

    Google Scholar 

  71. Slawsky MT, Colucci WS, Gottlieb SS, et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Circulation 2000; 102: 2222-2227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endoh, M. Mechanism of Action of Ca2+ Sensitizers—Update 2001. Cardiovasc Drugs Ther 15, 397–403 (2001). https://doi.org/10.1023/A:1013385305567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013385305567

Navigation