Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T15:09:45.405Z Has data issue: false hasContentIssue false

10 - Saliva-assisted transmission of tick-borne pathogens

Published online by Cambridge University Press:  21 August 2009

P. A. Nuttall
Affiliation:
Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford
M. Labuda
Affiliation:
Institute of Zoology Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava Slovakia
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Saliva-assisted transmission (SAT) is the indirect promotion of arthropod-borne pathogen transmission via the actions of arthropod saliva molecules on the vertebrate host. This phenomenon has been reported for most blood-feeding arthropods that transmit disease causing agents via their saliva, but the greatest number of examples has been recorded in ticks. The skin site where ticks feed is highly modified by the pharmacologically active molecules secreted in tick saliva. For pathogens, it is an ecologically privileged niche they can exploit. Here we review evidence for SAT and consider candidates for SAT factors among the tick pharmacopoeia of antihaemostatic, anti-inflammatory and immunomodulatory molecules. SAT factors appear to differ for different pathogens and tick vector species, and possibly even depend on the vertebrate host species on which a tick feeds. Most probably, SAT is mediated by a suite of molecules that act together to overcome the redundancy in host response mechanisms. The quest to identify the tick molecules that mediate SAT is an exciting one, offering new insights into host inflammatory and immune mechanisms, and novel ways of controlling ticks and tick-borne diseases.

TICK–HOST–PATHOGEN INTERACTIONS

The relationships between tick-borne pathogens, their tick vectors and diverse vertebrate hosts, can be represented by a triangle of parasitic interactions (Fig. 10). The interactions are between (i) pathogen–tick, (ii) pathogen–host and (iii) tick–host. In (i) the pathogen interacts with its vector, infecting and replicating within tick cells or extracellular spaces (including those of the gut, haemocoel and salivary glands).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 205 - 219
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, M., Alvarez-Fernandez, M. & Nathanson, C. M. (2003). Cystatins. Biochemistry Society Symposium 70, 179–199.CrossRefGoogle Scholar
Alekseev, A. N. & Chunikhin, S. P. (1990). Exchange of tick-borne encephalitis virus between Ixodidae simultaneously feeding on animals with subthreshold levels of viraemia. Meditsinskaya Parazitologiya i Parazitarnye Bolezni 2, 48–50.Google Scholar
Alekseev, A. N., Chunikhin, S. P., Rukhkyan, M. Y. & Stefutkina, L. F. (1991). Possible role of Ixodidae salivary gland substrate as an adjuvant enhancing arbovirus transmission. Meditsinskaya Parazitologiya i Parazitarnye Bolezni 1, 28–31.Google Scholar
Allen, J. R., Khalil, H. A. & Graham, J. E. (1979). The location of tick salivary antigens, complement and immunoglobulin in the skin of guinea-pigs infested with Dermacentor andersoni larvae. Immunology 38, 467–472.Google ScholarPubMed
Anguita, J., Ramamoorthi, N., Das, G., et al. (2002). Salp15, an Ixodes scapularis saliva protein, inhibits CD4+ T cell activation. Immunity 16, 849–859.CrossRefGoogle ScholarPubMed
Astigarraga, A., Oleaga-Perez, A., Perez-Sanchez, R., Baranda, J. A. & Encinas-Grandes, A. (1997). Host immune response evasion strategies in Ornithodoros erraticus and O. moubata and their relationship to the development of an antiargasid vaccine. Parasite Immunology 19, 401–410.CrossRefGoogle ScholarPubMed
Baumgarth, N. (2000). A two-phase model of B-cell activation. Immunology Reviews 176, 171–180.Google ScholarPubMed
Bezuidenhout, J. D. (1987). Natural transmission of heartwater. Onderstepoort Journal of Veterinary Medicine 54, 349–351.Google ScholarPubMed
Borjesson, D. L., Simon, S. I., Hodzic, E., et al. (2002). Roles of neutrophil β2 integrins in kinetics of bacteremia, extravasation, and tick acquisition of Anaplasma phagocytophila in mice. Blood 101, 3257–3264.CrossRefGoogle Scholar
Borucki, M. K., Kempf, B. J., Blitvich, B. J., Blair, C. D. & Beaty, B. J. (2002). La Crosse virus: replication in vertebrate and invertebrate hosts. Microbes and Infection 4, 341–350.CrossRefGoogle ScholarPubMed
Brossard, M. (1982). Rabbits infested with adult Ixodes ricinus L.: effects of mepyramine on acquired resistance. Experientia 38, 702–704.CrossRefGoogle ScholarPubMed
Cavassani, K. A., Aliberti, J. C., Dias, A. R., Silva, J. S. & Ferreira, B. R. (2005). Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology 114, 235–245.CrossRefGoogle ScholarPubMed
Christe, M., Rutti, B. & Brossard, M. (2000). Cytokines (IL-4 and IFN-gamma) and antibodies (IgE and IgG2a) produced in mice infected with Borrelia burgdorferi sensu stricto via nymphs of Ixodes ricinus ticks or syringe inoculations. Parasitology Research 86, 491–496.CrossRefGoogle ScholarPubMed
Cirino, G., Napoli, C., Bucci, M. & Cicala, C. (2000). Inflammation–coagulation network: are serine protease receptors the knot?Trends in Pharmacological Science 21, 170–172.CrossRefGoogle ScholarPubMed
Couillin, I., Maillet, I., Jacobs, M., et al. (2004). Arthropod-derived histamine binding protein prevents murine allergic asthma. Journal of Immunology 173, 3281–3286.CrossRefGoogle ScholarPubMed
Daix, V., Schroeder, N., Praet, N., et al., (2007). Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anti-complement proteins. Insect Biochemistry and Molecular Biology 16, 155–166.CrossRefGoogle Scholar
Dessens, J. T. & Nuttall, P. A. (1998). Mx1-based resistance to Thogoto virus in A2G mice is bypassed in tick-mediated virus delivery. Journal of Virology 72, 8362–8364.Google ScholarPubMed
Fujisaki, K., Kamio, T. & Kitaoka, S. (1984). Passage of host serum components, including antibodies specific for Theileria sergenti, across the digestive tract of argasid and ixodid ticks. Annals of Tropical Medicine and Parasitology 78, 449–450.CrossRefGoogle ScholarPubMed
Gadjeva, M., Thiel, S. & Jensenius, J. C. (2001). The mannan-binding-lectin pathway of the innate immune system. Current Opinions in Immunology 13, 74–78.CrossRefGoogle Scholar
Garcia, S., Billecocq, A., Crance, J. M., et al. (2005). Nairovirus RNA sequences expressed by a Semliki Forest virus replicon induce RNA interference in tick cells. Journal of Virology 79, 8942–8947.CrossRefGoogle ScholarPubMed
Garg, R.. Juncadella, I. J., Ramamoorthi, N., et al., (2006). Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. Journal of Immunology 177, 6579–6583.CrossRefGoogle ScholarPubMed
Gern, L. & Rais, O. (1996). Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). Journal of Medical Entomology 33, 189–192.CrossRefGoogle Scholar
Gillespie, R. D., Dolan, M. C., Piesman, J. & Titus, R. G. (2001). Identification of an IL-2 binding protein in the saliva of the Lyme disease vector tick, Ixodes scapularis. Journal of Immunology 166, 4319–4327.CrossRefGoogle ScholarPubMed
Goff, W., Johnson, W., Horn, R., Barrington, G. & Knowles, D. (2003). The innate response in calves to Boophilus microplus tick transmitted Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen. Parasite Immunology 25, 185–188.CrossRefGoogle ScholarPubMed
Goodbourn, S., Didcock, L. & Randall, R. E. (2000). Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. Journal of General Virology 81, 2341–2364.CrossRefGoogle Scholar
Gordon, S. W., Linthicum, K. J. & Moulton, J. R. (1993). Transmission of Crimean–Congo hemorrhagic fever virus in two species of Hyalomma ticks from infected adults to cofeeding immature forms. American Journal of Tropical Medicine and Hygiene 48, 576–580.CrossRefGoogle ScholarPubMed
Hajnická, V., Fuchsberger, N., Slovak, M., et al. (1998). Tick salivary gland extracts promote virus growth in vitro. Parasitology 116, 533–538.CrossRefGoogle ScholarPubMed
Hajnická, V., Kocáková, P., Sláviková, M., et al. (2001). Anti-interleukin-8 activity of tick salivary gland extracts. Parasite Immunology 23, 483–489.CrossRefGoogle ScholarPubMed
Hajnická, V., Kocaková, P., Slovák, M., et al. (2000). Inhibition of the antiviral action of interferon by tick salivary gland extract. Parasite Immunology 22, 201–206.CrossRefGoogle ScholarPubMed
Hajnická, V., Vancova, I., Kocakova, P., et al. (2005). Manipulation of host cytokine network by ticks: a potential gateway for pathogen transmission. Parasitology 130, 333–342.CrossRefGoogle ScholarPubMed
Haller, O., Frese, M., Rost, D., Nuttall, P. A. & Kochs, G. (1995). Tick-borne Thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product mx I. Journal of Virology 69, 2596–2601.Google Scholar
Hannier, S., Liversidge, J., Sternberg, J. M. & Bowman, A. S. (2003). Ixodes ricinus tick salivary gland extract inhibits IL-10 secretion and CD69 expression by mitogen-stimulated murine splenocytes and induces hyporesponsiveness in B lymphocytes. Parasite Immunology 25, 27–37.CrossRefGoogle ScholarPubMed
Hannier, S., Liversidge, J., Sternberg, J. M. & Bowman, A. S. (2004). Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: a potential role in enhanced Borrelia burgdorferi transmission. Immunology 113, 401–408.CrossRefGoogle Scholar
Hellwage, J., Meri, T., Heikkila, T., et al. (2001). The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. Journal of Biological Chemistry 276, 8427–8435.CrossRefGoogle ScholarPubMed
Hodzic, E., Borjesson, D. L., Feng, S. & Barthold, S. W. (2001). Acquisition dynamics of Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis at the host–vector interface. Vector Borne Zoonotic Disease 1, 149–158.CrossRefGoogle ScholarPubMed
Jasinskas, A., Jaworski, D. C. & Barbour, A. G. (2000). Amblyomma americanum: specific uptake of immunoglobulins into tick hemolymph during feeding. Experimental Parasitology 96, 213–221.CrossRefGoogle ScholarPubMed
Jaworski, D. C., Jasinskas, A., Metz, C. N., Bucala, R. & Barbour, A. G. (2001). Identification and characterization of a homologue of the pro-inflammatory cytokine Macrophage Migration Inhibitory Factor in the tick, Amblyomma americanum. Insect Molecular Biology 10, 323–331.CrossRefGoogle ScholarPubMed
Jones, L. D. & Nuttall, P. A. (1989). The effect of virus-immune hosts on Thogoto virus infection of the tick, Rhipicephalus appendiculatus. Virus Research 14, 129–140.CrossRefGoogle ScholarPubMed
Jones, L. D., Davies, C. R., Steele, G. M. & Nuttall, P. A. (1987). A novel mode of arbovirus transmission involving a nonviraemic host. Science 237, 775–777.CrossRefGoogle Scholar
Jones, L. D., Davies, C. R., Williams, T., Cory, J. & Nuttall, P. A. (1990 b). Non-viraemic transmission of Thogoto virus: vector efficiency of Rhipicephalus appendiculatus and Amblyomma variegatum. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 846–848.CrossRefGoogle ScholarPubMed
Jones, L. D., Gaunt, M., Hails, R. S., et al. (1997). Transmission of louping-ill virus between infected and uninfected ticks co-feeding on mountain hares. Medical and Veterinary Entomology 11, 172–176.CrossRefGoogle ScholarPubMed
Jones, L. D., Hodgson, E. & Nuttall, P. A. (1989). Enhancement of virus transmission by tick salivary glands. Journal of General Virology 70, 1895–1898.CrossRefGoogle ScholarPubMed
Jones, L. D., Hodgson, E. & Nuttall, P. A. (1990 a). Characterization of tick salivary gland factor(s) that enhance Thogoto virus transmission. Archives of Virology (Suppl.) 1, 227–234.Google Scholar
Jones, L. D., Hodgson, E., Williams, T., Higgs, S. & Nuttall, P. A. (1992 a). Saliva activated transmission (SAT) of Thogoto virus: relationship with vector potential of different haematophagous arthropods. Medical and Veterinary Entomology 6, 261–265.CrossRefGoogle ScholarPubMed
Jones, L. D., Kaufman, W. R. & Nuttall, P. A. (1992 b). Modification of the skin feeding site by tick saliva mediates virus transmission. Experientia 48, 779–782.CrossRefGoogle ScholarPubMed
Jones, L. D., Matthewson, M. & Nuttall, P. A. (1992 c). Saliva-activated transmission (SAT) of Thogoto virus: dynamics of SAT activity in the salivary glands of Rhipicephalus appendiculatus, Amblyomma variegatum, and Boophilus microplus. Experimental and Applied Acarology 13, 241–248.CrossRefGoogle ScholarPubMed
Karim, S., Miller, N. J., Valenzuela, J. G.Sauer, J. R. & Mather, T. N. (2005). RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochemical and Biophysical Research Communications 334, 1336–1342.CrossRefGoogle ScholarPubMed
Kemp, D. H., Stone, B. F. & Binnington, K. C. (1982). Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and host response. In Physiology of Ticks, eds. Obenchain, F. D. & Galun, R., pp. 119–168. Oxford, UK: Pergamon Press.Google Scholar
Kocan, K. M. & Fuente, J. (2003). Co-feeding studies of ticks infected with Anaplasma marginale. Veterinary Parasitology 112, 295–305.CrossRefGoogle ScholarPubMed
Konik, P., Slavikova, V., Salat, J., et al. (2006). Anti-tumour necrosis factor-alpha activity in Ixodes ricinus. Parasite Immunology 28, 649–656.CrossRefGoogle ScholarPubMed
Kopecky, J. & Kuthejlova, M. (1998). Suppressive effect of Ixodes ricinus salivary gland extract on mechanisms of natural immunity in vitro. Parasite Immunology 20, 169–174.Google Scholar
Kotsyfakis, M., Sa-Nuñes, A., Francischetti, I. M. B., et al. (2006). Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. Journal of Biological Chemistry 281, 26298–26307.CrossRefGoogle ScholarPubMed
Krocova, Z., Macela, A., Hernychova, L., et al. (2003). Tick salivary gland extract accelerates proliferation of Franciscella tularensis in the host. Journal of Parasitology 89, 14–20.CrossRefGoogle Scholar
Kubeš, M., Fuchsberger, N., Labuda, M., Zuffova, E. & Nuttall, P. A. (1994). Salivary gland extracts of partially fed Dermacentor reticulatus ticks decrease natural killer cell activity in vitro. Immunology 82, 113–116.Google ScholarPubMed
Kubeš, M., Kocáková, P., Slovák, M., et al. (2002). Heterogenity in the effect of different ixodid tick species on human natural killer cell activity. Parasite Immunology 24, 23–28.CrossRefGoogle Scholar
Kurtenbach, K., Sewell, H., Ogden, N., Randolph, S. E. & Nuttall, P. A. (1998). Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and Immunity 66, 1248–1251.Google ScholarPubMed
Kuthejlova, M., Kopecky, J., Stepanova, G. & Macela, A. (2001). Tick salivary gland extract inhibits killing of Borrelia afzelii spirochaetes by mouse macrophages. Infection and Immunity 69, 575–578.CrossRefGoogle ScholarPubMed
Kyckova, K. & Kopecky, J (2006). Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. Journal of Medical Entomology 43, 1208–1214.CrossRefGoogle ScholarPubMed
Labuda, M., Alves, M. J., Eleckova, E., Kozuch, O. & Filipe, A. R. (1997 a). Transmission of tick-borne bunyaviruses by cofeeding ixodid ticks. Acta Virologica 41, 325–328.Google ScholarPubMed
Labuda, M., Jones, L. D., Williams, T., Danielova, D. & Nuttall, P. A. (1993 a). Efficient transmission of tick-borne encephalitis virus between cofeeding ticks. Journal of Medical Entomology 30, 295–299.CrossRefGoogle ScholarPubMed
Labuda, M., Jones, L. D., Williams, T. & Nuttall, P. A. (1993 b). Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Medical and Veterinary Entomology 7, 193–196.CrossRefGoogle ScholarPubMed
Labuda, M., Kozuch, O., Zuffova, E., Eleckova, E., Hails, R. S. & Nuttall, P. A. (1997 b). Tick-borne encephalitis virus transmission between ticks co-feeding on specific immune natural rodent hosts. Virology 235, 138–143.CrossRefGoogle Scholar
Labuda, M., Nuttall, P. A., Kozuch, O., et al. (1993 c). Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia 49, 802–805.CrossRefGoogle ScholarPubMed
Labuda, M., Trimnell, A. R., Lickova, M., et al. (2006). An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathogens 2, e27.CrossRefGoogle ScholarPubMed
Lanier, L. (2000). The origin and functions of natural killer cells. Clinical Immunology 95, S14–S18.CrossRefGoogle ScholarPubMed
Law, S. K. & Reid, K. B. M. (1995). Complement. New York: Oxford University Press.Google Scholar
Lawrie, C. H., Randolph, S. E. & Nuttall, P. A. (1999). Ixodes ticks: serum species sensitivity of anti-complement activity. Experimental Parasitology 93, 207–214.CrossRefGoogle Scholar
Lawrie, C. H., Sim, R. B. & Nuttall, P. S. (2004). Investigation of the mechanisms of anti-complement activity in Ixodes ticks. Molecular Immunology 42, 31–38.CrossRefGoogle Scholar
Lawrie, C. H., Uzcategui, N. Y., Gould, E. A. & Nuttall, P. A. (2004). Ixodid and argasid ticks and West Nile virus. Emerging Infectious Diseases 10, 653–657.CrossRefGoogle ScholarPubMed
Leboulle, G., Crippa, M., Decrem, Y., et al. (2002). Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. Journal of Biological Chemistry 277, 10083–10089.CrossRefGoogle ScholarPubMed
Machackova, M., Obornik, M. & Kopecky, J. (2006). Effect of salivary gland extract from Ixodes ricinus ticks on the proliferation of Borrelia burgdorferi sensu stricto in vivo. Folia Parasitologica 53, 153–158.CrossRefGoogle ScholarPubMed
Mbow, M. L., Zeidner, N. S., Gilmore, R. D. J., et al. (2001). Major histocompatibility complex class 11-independent generation of neutralizing antibodies against T-cell-dependent Borrrelia burgdorferi antigens presented by dendritic cells: regulation by NK and γδ T cells. Infection and Immunity 69, 2407–2425.CrossRefGoogle Scholar
Minoura, H., Chinzei, Y. & Kitamura, S. (1985). Ornithodoros moubata: host immunoglobulin G in tick haemolymph. Experimental Parasitology 60, 355–363.CrossRefGoogle Scholar
Montgomery, R. R., Lusitani, D., Chevance, Boisfleury A. & Malawista, S. E. (2004). Tick saliva reduces adherence and area of human neutrophils. Infection and Immunity 72, 2989–2994.CrossRefGoogle ScholarPubMed
Mulenga, A., Macaluso, K. R., Simser, J. A. & Azad, A. F. (2003). The American dog tick, Dermacentor variabilis, encodes a functional histamine release factor homolog. Insect Biochemistry and Molecular Biology 33, 911–919.CrossRefGoogle ScholarPubMed
Norman, R., David, D., Laurenson, M. K. & Hudson, P. J. (2004). The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus: louping ill in red grouse (Lagopus lagopus scoticus) and mountain hares (Lepus timidus). Journal of Mathematical Biology 48, 119–134.CrossRefGoogle Scholar
Nunn, M. A., Sharma, A., Paesen, G. C., et al. (2005). Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. Journal of Immunology 174, 2084–2091.CrossRefGoogle ScholarPubMed
Nuttall, P. A. (1998). Displaced tick–parasite interactions at the host interface. Parasitology 116 (Suppl.), S65–S72.CrossRefGoogle ScholarPubMed
Nuttall, P. A. & Jones, L. D. (1991). Non-viraemic tick-borne virus transmission: mechanism and significance. In Modern Acarology, eds. Dusbabek, F. & Bukva, V., pp. 3–6. The Hague, Netherlands: SPB Academic.Google Scholar
Nuttall, P. A. & Labuda, M. (2003). Dynamics of infection in tick vectors and at the tick–host interface. Advances in Virus Research 60, 233–272.CrossRefGoogle ScholarPubMed
Nuttall, P. A. & Labuda, M. (2004). Tick–host interactions: saliva-activated transmission. Parasitology 129, S177–S190.CrossRefGoogle ScholarPubMed
Ochsenbein, A. F., Fehr, T., Lutz, C., et al. (1999). Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159.CrossRefGoogle ScholarPubMed
Packila, M. & Guilfoile, P. G. (2002). Mating male Ixodes scapularis express several genes including those with sequence similarity to immunoglobulin-binding proteins and met alloproteases. Experimental and Applied Acarology 27, 151–160.CrossRefGoogle Scholar
Paesen, G. C., Adams, P. L., Harlos, K., Nuttall, P. A. & Stuart, D. I. (1999). Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Molecular Cell 3, 661–671.CrossRefGoogle ScholarPubMed
Paesen, G. C., Adams, P. L., Nuttall, P. A. & Stuart, D. L. (2000). Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochimica et Biophysica Acta 1482, 92–101.CrossRefGoogle ScholarPubMed
Patrican, L. (1997). Acquisition of Lyme disease spirochetes by cofeeding Ixodes scapularis ticks. American Journal of Tropical Medicine and Hygiene 57, 589–593.CrossRefGoogle ScholarPubMed
Pausa, M. P. V., Cinco, M., Giulianini, P. G., et al. (2003). Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule. Journal of Immunology 170, 3214–3222.CrossRefGoogle ScholarPubMed
Pechova, J., Stepanova, G., Kovar, L. & Kopecky, J. (2002). Tick salivary gland extract-activated transmission of Borrelia afzelii spirochaetes. Folia Parasitologica 49, 153–159.CrossRefGoogle ScholarPubMed
Power, C., Proudfoot, A. & Frauenschuh, A. (2005). CC-chemokine-binding tick proteins. Patent WO/2005/063812.
Prévôt, P., Adam, B., Boudjeltia, K. Z., et al. (2006). Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. Journal of Biological Chemistry 281, 26361–26369.CrossRefGoogle ScholarPubMed
Ramamoorthi, N., Narasimhan, S., Pal, U., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577.CrossRefGoogle ScholarPubMed
Randolph, S. E., Gern, L. & Nuttall, P. A. (1996). Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitology Today 12, 472–479.CrossRefGoogle ScholarPubMed
Randolph, S. E., Miklisova, D., Lysy, J., Rogers, D. J. & Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177–186.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C. (1987). Ixodes dammini: salivary anti-complement activity. Experimental Parasitology 64, 347–353.CrossRefGoogle ScholarPubMed
Ribeiro, J. & Spielman, A. (1986). Ixodes dammini: salivary anaphylatoxin inactivating activity. Experimental Parasitology 62, 292–297.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C., Alarcon-Chaidez, F., Francischetti, I. M. B., et al. (2006). An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochemistry and Molecular Biology 36, 111–129.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C., Weiss, J. J. & Telford, S. R. III (1990). Saliva of the tick Ixodes dammini inhibits neutrophil function. Experimental Parasitology 70, 382–388.CrossRefGoogle ScholarPubMed
Richter, D., Allgower, R. & Matuschka, F.-R. (2002). Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete Borrelia afzelii. Emerging Infectious Diseases 8, 1421–1425.CrossRefGoogle ScholarPubMed
Rudolf, I. & Hubalek, Z. (2003). Effect of the salivary gland and midgut extracts from Ixodes ricinus and Dermacentor reticulatus (Acari: Ixodidae) on the growth of Borrelia garinii in vitro. Folia Parasitologica 50, 159–160.CrossRefGoogle ScholarPubMed
Ryffel, B., Couillin, I., Maillet, I., et al. (2005). Histamine scavenging attenuates endotoxin-induced acute lung injury. Annals of the New York Academy of Science 1056, 197–205.CrossRefGoogle ScholarPubMed
Sato, Y. & Nakao, M. (1997). Transmission of the Lyme disease spirochaete, Borrelia garinii, between infected and uninfected Ixodes persulcatus during cofeeding on mice. Journal of Parasitology 83, 547–550.CrossRefGoogle ScholarPubMed
Severinova, J., Salat, J., Krocova, Z., et al. (2005). Co-inoculation of Borrelia afzelii with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice. Folia Microbiologica 50, 457–463.CrossRefGoogle Scholar
Shaw, M. K., Tilney, L. G. & Mckeever, D. J. (1993). Tick salivary gland extract and interleukin-2 stimulation enhance susceptibility of lymphocytes to infection by Theileria parva sporozoites. Infection and Immunity 61, 1486–1495.Google ScholarPubMed
Shih, C.-M., Chao, L. L. & Yu, C. P. (2002). Chemotactic migration of the Lyme disease spirochete (Borrelia burgdorferi) to salivary gland extracts of vector ticks. American Journal of Tropical Medicine and Hygiene 66, 616–621.CrossRefGoogle ScholarPubMed
Singh, K. R. P., Goverdhan, M. K. & Bhat, U. K. M. (1971). Transmission of Kyasanur forest disease virus by soft tick, Argas persicus (Ixodoidea: Argasidae). Indian Journal of Medical Research 59, 213–218.Google Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. (1998). How cells respond to interferons. Annual Review of Biochemistry 67, 227–254.CrossRefGoogle ScholarPubMed
Stebbings, J. H. J. (1974). Immediate hypersensitivity: a defense against arthropods?Perspectives in Biology and Medicine 17, 233–239.CrossRefGoogle ScholarPubMed
Steen, N. A., Barker, S. C., & Alewood, P. F. (2006). Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47, 1–20.CrossRefGoogle ScholarPubMed
Suhonen, J., Hartiala, K. & Viljanen, M. K. (1998). Tube phagocytosis, a novel way for neutrophils to phagocytose Borrelia burgdorferi. Infection and Immunity 66, 3433–3435.Google ScholarPubMed
Sukumaran, B., Narasimhan, S., Anderson, J. F., et al. (2006). An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. Journal of Experimental Medicine 203, 1507–1517.CrossRefGoogle ScholarPubMed
Takamatsu, H., Mellor, P. S., Mertens, P. P., et al. (2003). A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. Journal of General Virology 84, 227–235.CrossRefGoogle ScholarPubMed
Takeshita, K., Sakai, K., Bacon, K. B. & Gantner, F. (2003). Critical role of histamine H4 receptor in leukotriene B4 production and mast cell-dependent neutrophil recruitment inuced by zymosan in vivo. Journal of Pharmacology and Experimental Therapeutics 307, 1–7.CrossRefGoogle Scholar
Titus, R. G., Bishop, J. V. & Mejia, J. S. (2006). The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunology 28, 131–141.Google ScholarPubMed
Ullmann, A. J., Lane, R. S., Kurtenbach, K., et al. (2003). Bacteriolytic activity of selected vertebrate sera for Borrelia burgdorferi sensu stricto and Borrelia bissettii. Journal of Parasitology 89, 1256–1257.CrossRefGoogle ScholarPubMed
Valenzuela, J. G., Charlab, R., Mather, T. N. & Ribeiro, J. M. C. (2000). Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. Journal of Biological Chemistry 275, 18717–18723.CrossRefGoogle ScholarPubMed
Dam, A. P. (2002). Diversity of Ixodes-borne Borrelia species: clinical, pathogenetic, and diagnostic implications and impact on vaccine development. Vector-Borne Zoonotic Disease 2, 249–254.Google ScholarPubMed
Wang, H. & Nuttall, P. A. (1994). Excretion of host immunoglobulin in tick saliva and detection of IgG-binding proteins in tick haemolymph and salivary glands. Parasitology 109, 525–530.CrossRefGoogle ScholarPubMed
Wang, H. & Nuttall, P. A. (1999). Immunoglobulin binding proteins in ticks: new target for vaccine development against a blood-feeding parasite. Cellular and Molecular Life Sciences 56, 286–295.CrossRefGoogle ScholarPubMed
Wang, H., Paesen, G. C., Nuttall, P. A. & Barbour, A. G. (1998). Male ticks help their mates to feed. Nature 391, 753–754.CrossRefGoogle Scholar
Wikel, S. K. (1982). Histamine content of tick attachment sites and the effects of HI and H2 histamine antagonists on the expression of resistance. Annals of Tropical Medicine and Parasitology 76, 179–185.CrossRefGoogle Scholar
Wikel, S. K. (1985). Effect of tick infestation on the plaque-forming cell response to a thymic dependent antigen. Annals of Tropical Medicine and Parasitology 79, 195–198.CrossRefGoogle Scholar
Wikel, S. K. & Allen, J. R. (1977). Acquired resistance to ticks. III. Cobra venom factor and the resistance response. Immunology 32, 457–465.Google ScholarPubMed
Wikel, S. K., Ramachandra, R. N., Bergman, D. K., Burkot, T. R. & Piesman, J. (1997). Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infection and Immunity 65, 335–338.Google ScholarPubMed
Willadsen, P., Wood, G. M. & Riding, G. A. (1979). The relation between skin histamine concentration, histamine sensitivity and the resistance of cattle to the tick Boophilus microplus. Zeitschrift fûr Parasitenkunde 59, 87–93.CrossRefGoogle ScholarPubMed
Yu, D., Liang, J., Yu, C., et al. (2006). A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochemical and Biophysical Research Communications 343, 585–590.CrossRefGoogle ScholarPubMed
Zeidner, N., Dreitz, M., Belasco, W. & Fish, D. (1996). Suppression of acute Ixodes scapularis-induced Borrelia burgdorferi infection using tumour necrosis factor-alpha, interleukin-2 and interferon-gamma. Journal of Infectious Diseases 173, 187–195.CrossRefGoogle ScholarPubMed
Zeidner, N., Mbow, M., Dolan, M., et al. (1997). Effects of Ixodes scapularis and Borrelia burgdorferi on modulation of the host immune response: induction of the Th2 cytokine response in Lyme disease-susceptible (C3H/HeJ) mice but not in disease-resistant (BALB/c) mice. Infection and Immunity 65, 3100–3106.Google Scholar
Zeidner, N. S., Schneider, B. S., Nuncio, M. S., Gern, L. & Piesman, J. (2002). Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochaete load in mice and is tick species-specific. Journal of Parasitology 88, 1276–1278.Google ScholarPubMed
Zeller, H. G., Cornet, J.-P. & Camicas, J.-L. (1994). Experimental transmission of Crimean–Congo hemorrhagic fever virus by West African wild ground-feeding birds to Hyalomma marginatum rufipes ticks. American Journal of Tropical Medicine and Hygiene 50, 676–681.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×