Expert Review
First trimester preeclampsia screening and prediction

https://doi.org/10.1016/j.ajog.2020.07.020Get rights and content

Preeclampsia is a major cause of maternal and perinatal morbidity and mortality. Early-onset disease requiring preterm delivery is associated with a higher risk of complications in both mothers and babies. Evidence suggests that the administration of low-dose aspirin initiated before 16 weeks’ gestation significantly reduces the rate of preterm preeclampsia. Therefore, it is important to identify pregnant women at risk of developing preeclampsia during the first trimester of pregnancy, thus allowing timely therapeutic intervention. Several professional organizations such as the American College of Obstetricians and Gynecologists (ACOG) and National Institute for Health and Care Excellence (NICE) have proposed screening for preeclampsia based on maternal risk factors. The approach recommended by ACOG and NICE essentially treats each risk factor as a separate screening test with additive detection rate and screen-positive rate. Evidence has shown that preeclampsia screening based on the NICE and ACOG approach has suboptimal performance, as the NICE recommendation only achieves detection rates of 41% and 34%, with a 10% false-positive rate, for preterm and term preeclampsia, respectively. Screening based on the 2013 ACOG recommendation can only achieve detection rates of 5% and 2% for preterm and term preeclampsia, respectively, with a 0.2% false-positive rate. Various first trimester prediction models have been developed. Most of them have not undergone or failed external validation. However, it is worthy of note that the Fetal Medicine Foundation (FMF) first trimester prediction model (namely the triple test), which consists of a combination of maternal factors and measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor, has undergone successful internal and external validation. The FMF triple test has detection rates of 90% and 75% for the prediction of early and preterm preeclampsia, respectively, with a 10% false-positive rate. Such performance of screening is superior to that of the traditional method by maternal risk factors alone. The use of the FMF prediction model, followed by the administration of low-dose aspirin, has been shown to reduce the rate of preterm preeclampsia by 62%. The number needed to screen to prevent 1 case of preterm preeclampsia by the FMF triple test is 250. The key to maintaining optimal screening performance is to establish standardized protocols for biomarker measurements and regular biomarker quality assessment, as inaccurate measurement can affect screening performance. Tools frequently used to assess quality control include the cumulative sum and target plot. Cumulative sum is a sensitive method to detect small shifts over time, and point of shift can be easily identified. Target plot is a tool to evaluate deviation from the expected multiple of median and the expected median of standard deviation. Target plot is easy to interpret and visualize. However, it is insensitive to detecting small deviations. Adherence to well-defined protocols for the measurements of mean arterial pressure, uterine artery pulsatility index, and placental growth factor is required. This article summarizes the existing literature on the different methods, recommendations by professional organizations, quality assessment of different components of risk assessment, and clinical implementation of the first trimester screening for preeclampsia.

Key words

abruption
algorithm
ASPRE
adverse pregnancy outcome
aspirin
blood pressure
competing risk
CUSUM
fetal growth restriction
first trimester
FMF
Fetal Medicine Foundation
FGR
hypertension
IUGR
mean arterial pressure
morbidity
mortality
NNS
NNT
number needed to screen
number needed to treat
perinatal
placental insufficiency
PLGF
placental growth factor
prediction
preeclampsia
pregnancy
pregnancy complications
prematurity
preterm
prevention
prophylaxis
pulsatility index
quality assessment
quality assurance
resistant index
risk factor
safety
stillbirth
UtA-PI
target plot
uterine artery
validation

Cited by (0)

The authors report no conflict of interest.

This paper is part of a supplement.

View Abstract