Original article
Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration

https://doi.org/10.1016/j.ajo.2015.02.020Get rights and content
Under a Creative Commons license
open access

Purpose

To monitor retinal pigment epithelial (RPE) atrophy progression during antiangiogenic therapy of neovascular age-related macular degeneration (AMD) over 2 years using polarization-sensitive optical coherence tomography (OCT).

Design

Prospective interventional case series.

Methods

setting: Clinical practice. study population: Thirty patients (31 eyes) with treatment-naïve neovascular AMD. observation procedures: Standard intravitreal therapy (0.5 mg ranibizumab) was administered monthly during the first year and pro re nata (PRN; as-needed) during the second year. Spectral-domain (SD) OCT and polarization-sensitive OCT (selectively imaging the RPE) examinations were performed at baseline and at 1, 3, 6, 12, and 24 months using a standardized protocol. RPE-related changes were evaluated using a semi-automated polarization-sensitive OCT segmentation algorithm and correlated with SD OCT and fundus autofluorescence (FAF) findings. main outcome measures: RPE response, geographic atrophy (GA) progression.

Results

Atrophic RPE changes included RPE thinning, RPE porosity, focal RPE atrophy, and development of GA. Early RPE loss (ie, RPE porosity, focal atrophy) increased progressively during initial monthly treatment and remained stable during subsequent PRN-based therapy. GA developed in 61% of eyes at month 24. Mean GA area increased from 0.77 mm2 at 12 months to 1.10 mm2 (standard deviation = 1.09 mm2) at 24 months. Reactive accumulation of RPE-related material at the lesion borders increased until month 3 and subsequently decreased.

Conclusions

Progressive RPE atrophy and GA developed in the majority of eyes. RPE migration signifies certain RPE plasticity. Polarization-sensitive OCT specifically images RPE-related changes in neovascular AMD, contrary to conventional imaging methods. Polarization-sensitive OCT allows for precisely monitoring the sequence of RPE-related morphologic changes.

Cited by (0)

Christopher Schütze, MD, is a resident at the Medical University of Vienna. He is an ophthalmologist with a focus on clinical research in retinal diseases, in particular age-related macular degeneration using state of the art optical coherence tomography and polarization-sensitive optical coherence tomography imaging. Dr Schütze actively participated in many conventions and is an avid lecturer and teacher.