Skip to main content

Advertisement

Log in

Serum levels of the bone turnover markers dickkopf-1, sclerostin, osteoprotegerin, osteopontin, osteocalcin and 25-hydroxyvitamin D in Swedish geriatric patients aged 75 years or older with a fresh hip fracture and in healthy controls

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Bone turnover markers have a potential clinical use in describing bone remodeling and in predicting fractures.

Aims

In an elderly population ≥75 years with a fresh hip fracture, and in healthy controls, investigate bone turnover markers and their relation to each other, to vitamin D status and to bone mineral density (BMD).

Methods

In a cross-sectional study serum levels of dickkopf-1 (DKK-1), sclerostin (SOST), osteoprotegerin (OPG), osteopontin (OPN), osteocalcin, 25-hydroxyvitamin D (25(OH)D) were analyzed in 89 Swedish patients with a fresh hip fracture and in 82 healthy volunteers. Serum levels of bone markers were determined by Luminex technique.

Results

S-25-hydroxyvitamin D (S-25(OH)D) was decreased in patients compared to controls (48 ± 21 vs. 76 ± 25 nmol/L, p < 0.001). SOST, but none of the other bone turnover markers correlated with BMD (r = 0.50, p < 0.001). Compared with controls, higher levels of OPG (488 ± 1.4 vs. 191 ± 1.4 ng/L, p < 0.001), OPN (69 ± 1.7 vs. 19 ± 1.4 µg/L, p < 0.001), DKK-1 (273 ± 1.7 vs. 168 ± 1.7 ng/L, p < 0.001), and lower levels of osteocalcin (5.8 ± 3.5 vs. 9.5 ± 3.6 µg/L, p < 0.001), were found in the fracture group. Levels of OPG, DKK-1 and SOST in both groups were positively associated. S-25(OH)D concentration was not found to be strongly associated with any of the bone markers.

Conclusions

In contrast to findings in other studies, we found no strong correlation between 25(OH)D and the investigated bone markers. Both in patients with a fresh hip fracture and in healthy elderly, DKK-1, SOST and OPG appear to be associated. This suggests a relevance in these relationships meriting further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181:265–271. doi:10.1503/cmaj.081720

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haleem S, Lutchman L, Mayahi R, Grice JE, Parker MJ (2008) Mortality following hip fracture: trends and geographical variations over the last 40 years. Injury 39:1157–1163. doi:10.1016/j.injury.2008.03.022

    Article  CAS  PubMed  Google Scholar 

  3. Maier GS, Seeger JB, Horas K, Roth KE, Kurth AA, Maus U (2015) The prevalence of vitamin D deficiency in patients with vertebral fragility fractures. Bone Jt J 97:89–93. doi:10.1302/0301-620X.97B1.34558

    Article  Google Scholar 

  4. Eastell R, Hannon RA (2008) Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc 67:157–162. doi:10.1017/S002966510800699X

    Article  PubMed  Google Scholar 

  5. Garnero P, Delmas PD (2004) Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact 4:50–63

    CAS  PubMed  Google Scholar 

  6. Łukaszkiewicz J, Karczmarewicz E, Płudowski P Jaworski M, Czerwiński E, Lewiński A, Marcinowska-Suchowierska E, Milewicz A, Spaczyński M, Lorenc RS; EPOLOS Group (2008) Feasibility of simultaneous measurement of bone formation and bone resorption markers to assess bone turnover rate in postmenopausal women: an EPOLOS study. Med Sci Monit 14:PH65–PH70

  7. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Väänänen HK, Akesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19:386–393

    Article  CAS  PubMed  Google Scholar 

  8. Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643

    Article  CAS  PubMed  Google Scholar 

  9. Dovjak P, Dorfer S, Föger-Samwald U, Kudlacek S, Marculescu R, Pietschmann P (2014) Serum levels of sclerostin and dickkopf-1: effects of age, gender and fracture status. Gerontology 60:493–501. doi:10.1159/000358303

    Article  CAS  PubMed  Google Scholar 

  10. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappa B ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6362

    Article  CAS  PubMed  Google Scholar 

  11. Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW (2010) Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int 21:1401–1409. doi:10.1007/s00198-009-1107-7

    Article  CAS  PubMed  Google Scholar 

  12. Hind K, Oldroyd B, Truscott JG (2010) In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. J Clin Densitom 13:413–417. doi:10.1016/j.jocd.2010.06.002

    Article  PubMed  Google Scholar 

  13. Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5(2):73–80

    Article  PubMed  Google Scholar 

  14. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr (2009) The role of dickkopf-1 in bone development, homeostasis, and disease. Blood 113(3):517–525. doi:10.1182/blood-2008-03-145169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gatti D, Viapiana O, Fracassi E, Idolazzi L, Dartizio C, Povino MR, Adami S, Rossini M (2012) Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J Bone Miner Res 27:2259–2263. doi:10.1002/jbmr.1681

    Article  CAS  PubMed  Google Scholar 

  16. Papapoulos S (2011) Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis 70:i119–i122

    Article  CAS  PubMed  Google Scholar 

  17. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner JC, Galas D, Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12–q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110:144–152

    Article  PubMed  Google Scholar 

  18. Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH (2011) Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res 26:2812–2822. doi:10.1002/jbmr.1681

    Article  CAS  PubMed  Google Scholar 

  19. Sarahrudi K, Thomas A, Albrecht C, Aharinejad S (2012) Strongly enhanced levels of sclerostin during human fracture healing. J Orthop Res 30:1549–1555. doi:10.1002/jor.22129

    Article  CAS  PubMed  Google Scholar 

  20. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56:42–47. doi:10.1016/j.bone.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  21. Mödder UI, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res 26:27–34. doi:10.1002/jbmr.128

    Article  PubMed  Google Scholar 

  22. Thambiah S, Roplekar R, Manghat P, Fogelman I, Fraser WD, Goldsmith D, Hampson G (2012) Circulating sclerostin and dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int 90:473–480. doi:10.1007/s00223-012-9595-4

    Article  CAS  PubMed  Google Scholar 

  23. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26. doi:10.1002/jbmr.173

    Article  CAS  PubMed  Google Scholar 

  24. Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT, Refvem H, Frigessi A, Houston B, Gautvik KM (2011) Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J Bone Miner Res 26:1793–1801. doi:10.1002/jbmr.396

    Article  CAS  PubMed  Google Scholar 

  25. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. doi:10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butler JS, Murray DW, Hurson CJ, O’Brien J, Doran PP, O’Byrne JM (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 29:414–418. doi:10.1002/jor.21260

    Article  PubMed  Google Scholar 

  27. Register TC, Hruska KA, Divers J, Bowden DW, Palmer ND, Carr JJ, Wagenknecht LE, Hightower RC, Xu J, Smith SC, Dietzen DJ, Langefeld CD, Freedman BI (2012) Plasma dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African–Americans with type 2 diabetes. J Clin Endocrinol Metab 98:E60–E65. doi:10.1210/jc.2012-3038

    Article  PubMed  PubMed Central  Google Scholar 

  28. Viapiana O, Fracassi E, Troplini S, Idolazzi L, Rossini M, Adami S, Gatti D (2013) Sclerostin and DKK1 in primary hyperparathyroidism. Calcif Tissue Int 92:324–329. doi:10.1007/s00223-012-9665-7

    Article  CAS  PubMed  Google Scholar 

  29. Cho EH, Cho KH, Lee HA, Kim SW (2013) High serum osteopontin levels are associated with low bone mineral density in postmenopausal women. J Korean Med Sci 28:1496–1499. doi:10.3346/jkms.2013.28.10.1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fodor D, Bondor C, Albu A, Simon SP, Craciun A, Muntean L (2013) The value of osteopontin in the assessment of bone mineral density status in postmenopausal women. J Investig Med 61:15–21. doi:10.231/JIM.0b013e3182761264

    Article  CAS  PubMed  Google Scholar 

  31. Sypniewska G, Sobanska I, Pater A, Kedziora-Kornatowska K, Nowacki W (2010) Does serum osteoprotegerin level relate to fragility fracture in elderly women with low vitamin D status? Med Sci Monit 16:CR96–CR101

  32. Kearns AE, Khosla S, Kostenuik P (2008) RANKL and OPG: regulation of bone remodeling in health and disease. Endocrine Rev 29:155–192

    Article  CAS  Google Scholar 

  33. Köttstorfer J, Thomas A, Gregori M, Kecht M, Kaiser G, Eipeldauer S, Sarahrudi K (2014) Are OPG and RANKL involved in human fracture healing? J Orthop Res 32:1557–1561. doi:10.1002/jor.22723

    Article  PubMed  Google Scholar 

  34. Wang XF, Zhang YK, Yu ZS, Zhou JL (2013) The role of the serum RANKL/OPG ratio in the healing of intertrochanteric fractures in elderly patients. Mol Med Rep 7:1169–1172. doi:10.3892/mmr.2013.1335

    CAS  PubMed  Google Scholar 

  35. Barton RN, Weijers JW, Horan MA (1993) Increased rates of cortisol production and urinary free cortisol excretion in elderly women 2 weeks after proximal femur fracture. Eur J Clin Invest 23:171–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Kamprad Family Foundation for Entrepreneurship, Research & Charity. We are also indebted to nurses Anna Pettersson, Agneta Hallengren and to Ulrika Lönnbom for excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wanby.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanby, P., Nobin, R., Von, SP. et al. Serum levels of the bone turnover markers dickkopf-1, sclerostin, osteoprotegerin, osteopontin, osteocalcin and 25-hydroxyvitamin D in Swedish geriatric patients aged 75 years or older with a fresh hip fracture and in healthy controls. J Endocrinol Invest 39, 855–863 (2016). https://doi.org/10.1007/s40618-015-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0421-5

Keywords

Navigation