Skip to main content
Log in

Current Outlook on Molecular Pathogenesis and Treatment of Myeloproliferative Neoplasms

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Discovery of the JAK2 V617F mutation in the myeloproliferative neoplasms (MPNs) essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) has stimulated great interest in the underlying molecular mechanisms and treatment of these diseases. Along with acceleration of technologies, novel mutations in genes such as MPL, LNK, and CBL have been discovered that converge on the JAK-STAT pathway. Several additional novel mutations in genes involved in epigenetic regulation of the genome, including TET2, ASXL1, DNMT3A, and IDH1/2, have emerged, in addition to several mutations in cellular splicing machinery. While understanding of the pathogenetic mechanisms of these novel mutations in MPNs has improved, it is still lagging behind the pace of mutation discovery. Concurrent with molecular discoveries, especially with regard to JAK-STAT signaling, therapeutic development has accelerated in recent years. More than ten JAK kinase inhibitors have been advanced into clinical trials. Recently the first JAK2 inhibitor was approved for use in patients with PMF. Most JAK-targeting agents share similar characteristics with regard to clinical benefit, consisting of improvements in splenomegaly, constitutional symptoms, and cytopenias, for example. It remains to be determined if JAK2 inhibitors can considerably impact disease progression and bone marrow histologic features (e.g., fibrosis) or significantly impact the JAK2 allele burden. While JAK2 inhibitors appear to be promising in PV and ET, they need to be compared with standard therapies, such as hydroxyurea or interferon-based therapies. Future clinical development will focus on optimal combination partners and agents that target alternative mechanisms, deepen the response, and achieve molecular remissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    PubMed  CAS  Google Scholar 

  2. Passamonti F, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93:1645–51.

    PubMed  Google Scholar 

  3. Rozman C, et al. Life expectancy of patients with chronic nonleukemic myeloproliferative disorders. Cancer. 1991;67:2658–63.

    PubMed  CAS  Google Scholar 

  4. Tefferi A, et al. A long-term retrospective study of young women with essential thrombocythemia. Mayo Clin Proc. 2001;76:22–8.

    PubMed  CAS  Google Scholar 

  5. Landolfi R, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24.

    PubMed  CAS  Google Scholar 

  6. Di Nisio M, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol. 2007;136:249–59.

    PubMed  Google Scholar 

  7. Harrison CN, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    PubMed  CAS  Google Scholar 

  8. Kiladjian JJ, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.

    PubMed  CAS  Google Scholar 

  9. Cervantes F, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    PubMed  CAS  Google Scholar 

  10. Mesa RA. How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood. 2009;113:5394–400.

    PubMed  CAS  Google Scholar 

  11. Tibes R, Mesa RA. Blood consult: resistant and progressive essential thrombocythemia. Blood. 2011;118:240–2.

    PubMed  CAS  Google Scholar 

  12. Barosi G, et al. Thalidomide in myelofibrosis with myeloid metaplasia: a pooled-analysis of individual patient data from five studies. Leuk Lymphoma. 2002;43:2301–7.

    PubMed  Google Scholar 

  13. Mesa RA, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood. 2003;101:2534–41.

    PubMed  CAS  Google Scholar 

  14. Cervantes F, et al. Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol. 2005;129:771–5.

    PubMed  CAS  Google Scholar 

  15. Lofvenberg E, et al. Reversal of myelofibrosis by hydroxyurea. Eur J Haematol. 1990;44:33–8.

    PubMed  CAS  Google Scholar 

  16. Petti MC, et al. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;116:576–81.

    PubMed  CAS  Google Scholar 

  17. Mesa RA, et al. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107:361–70.

    PubMed  Google Scholar 

  18. Elliott MA, et al. Splenic irradiation for symptomatic splenomegaly associated with myelofibrosis with myeloid metaplasia. Br J Haematol. 1998;103:505–11.

    PubMed  CAS  Google Scholar 

  19. Ballen KK, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transpl. 2010;16:358–67.

    Google Scholar 

  20. Gangat N, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    PubMed  Google Scholar 

  21. Passamonti F, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.

    PubMed  CAS  Google Scholar 

  22. Quintas-Cardama A, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.

    PubMed  CAS  Google Scholar 

  23. Harrison CN, et al. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood. 1999;93:417–24.

    PubMed  CAS  Google Scholar 

  24. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.

    PubMed  CAS  Google Scholar 

  25. Vannucchi AM, et al. Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin. 2009;59:171–91.

    PubMed  Google Scholar 

  26. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    PubMed  CAS  Google Scholar 

  27. James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    PubMed  CAS  Google Scholar 

  28. Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    PubMed  CAS  Google Scholar 

  29. Zhao R, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92.

    PubMed  CAS  Google Scholar 

  30. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    PubMed  CAS  Google Scholar 

  31. Wolanskyj AP, et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol. 2005;131:208–13.

    PubMed  CAS  Google Scholar 

  32. Trelinski J, et al. Circulating endothelial cells in essential thrombocythemia and polycythemia vera: correlation with JAK2-V617F mutational status, angiogenic factors and coagulation activation markers. Int J Hematol. 2010;91:792–8.

    PubMed  CAS  Google Scholar 

  33. Ash RC, et al. In vitro studies of human pluripotential hematopoietic progenitors in polycythemia vera: direct evidence of stem cell involvement. J Clin Invest. 1982;69:1112–8.

    PubMed  CAS  Google Scholar 

  34. Dai CH, et al. Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest. 1991;87:391–6.

    PubMed  CAS  Google Scholar 

  35. Axelrad AA, et al. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia. Blood. 2000;96:3310–21.

    PubMed  CAS  Google Scholar 

  36. Jelinek J, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005;106:3370–3.

    PubMed  CAS  Google Scholar 

  37. Steensma DP, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood. 2005;106:1207–9.

    PubMed  CAS  Google Scholar 

  38. Scott LM, et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood. 2005;106:2920–1.

    PubMed  CAS  Google Scholar 

  39. Beer PA, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    PubMed  CAS  Google Scholar 

  40. Tefferi A, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer. 2006;106:631–5.

    PubMed  CAS  Google Scholar 

  41. Larsen TS, et al. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol. 2007;79:508–15.

    PubMed  CAS  Google Scholar 

  42. Vannucchi AM, et al. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.

    PubMed  CAS  Google Scholar 

  43. Campbell PJ, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107:2098–100.

    PubMed  CAS  Google Scholar 

  44. Guglielmelli P, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009;114:1477–83.

    PubMed  CAS  Google Scholar 

  45. Kittur J, et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer. 2007;109:2279–84.

    PubMed  Google Scholar 

  46. Palandri F, et al. JAK2 V617F mutation in essential thrombocythemia: correlation with clinical characteristics, response to therapy and long-term outcome in a cohort of 275 patients. Leuk Lymphoma. 2009;50:247–53.

    PubMed  CAS  Google Scholar 

  47. Vannucchi AM, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007;21:1952–9.

    PubMed  CAS  Google Scholar 

  48. Scott LM, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.

    PubMed  CAS  Google Scholar 

  49. Pardanani A, et al. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007;21:1960–3.

    PubMed  CAS  Google Scholar 

  50. Barosi G, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–8.

    PubMed  CAS  Google Scholar 

  51. Antonioli E, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93:41–8.

    PubMed  CAS  Google Scholar 

  52. Olcaydu D, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4.

    PubMed  CAS  Google Scholar 

  53. Jones AV, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41:446–9.

    PubMed  CAS  Google Scholar 

  54. Patnaik MM, et al. Chromosome 9p24 abnormalities: prevalence, description of novel JAK2 translocations, JAK2V617F mutation analysis and clinicopathologic correlates. Eur J Haematol. 2010;84:518–24.

    PubMed  CAS  Google Scholar 

  55. Quentmeier H, et al. SOCS2: inhibitor of JAK2V617F-mediated signal transduction. Leukemia. 2008;22:2169–75.

    PubMed  CAS  Google Scholar 

  56. Jager R, et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia. 2010;24:1290–8.

    PubMed  CAS  Google Scholar 

  57. Klampfl T, et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood. 2011;118:167–76.

    PubMed  CAS  Google Scholar 

  58. Passamonti F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117:2813–6.

    PubMed  CAS  Google Scholar 

  59. Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol. 2011;86:668–76.

    PubMed  CAS  Google Scholar 

  60. Pardanani AD, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    PubMed  CAS  Google Scholar 

  61. Pikman Y, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    PubMed  Google Scholar 

  62. Lasho TL, et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol. 2006;135:683–7.

    PubMed  CAS  Google Scholar 

  63. Vannucchi AM, et al. Constitutively activated and hyper-sensitive basophils in patients with polycythemia vera: role of JAK2V617F mutation and correlation with pruritus [abstract no. 3714]. Blood. 2008;112(11):3714.

    Google Scholar 

  64. Vannucchi AM, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112:844–7.

    PubMed  CAS  Google Scholar 

  65. Guglielmelli P, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol. 2007;137:244–7.

    PubMed  CAS  Google Scholar 

  66. Beer PA, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112:141–9.

    PubMed  CAS  Google Scholar 

  67. Oh ST, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116:988–92.

    PubMed  CAS  Google Scholar 

  68. Velazquez L, et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med. 2002;195:1599–611.

    PubMed  CAS  Google Scholar 

  69. Baran-Marszak F, et al. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood. 2010;116:5961–71.

    PubMed  Google Scholar 

  70. Sanada M, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.

    PubMed  CAS  Google Scholar 

  71. Loh ML, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114:1859–63.

    PubMed  CAS  Google Scholar 

  72. Makishima H, et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol. 2009;27:6109–16.

    PubMed  CAS  Google Scholar 

  73. Grand FH, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92.

    PubMed  CAS  Google Scholar 

  74. Jankowska AM, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.

    PubMed  CAS  Google Scholar 

  75. Mardis ER, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    PubMed  CAS  Google Scholar 

  76. Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    PubMed  CAS  Google Scholar 

  77. Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    PubMed  CAS  Google Scholar 

  78. Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.

    PubMed  CAS  Google Scholar 

  79. Pardanani A, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24:1713–8.

    PubMed  CAS  Google Scholar 

  80. Tefferi A, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia. 2010;24:1302–9.

    PubMed  CAS  Google Scholar 

  81. Ko M, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.

    PubMed  CAS  Google Scholar 

  82. Li Z, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.

    PubMed  CAS  Google Scholar 

  83. Delhommeau F, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

    PubMed  Google Scholar 

  84. Tefferi A, et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 2009;23:1343–5.

    PubMed  CAS  Google Scholar 

  85. Kosmider O, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009;94:1676–81.

    PubMed  CAS  Google Scholar 

  86. Jankowska AM, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113:6403–10.

    PubMed  CAS  Google Scholar 

  87. Tefferi A, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23:905–11.

    PubMed  CAS  Google Scholar 

  88. Kosmider O, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114:3285–91.

    PubMed  CAS  Google Scholar 

  89. Bejar R, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.

    PubMed  CAS  Google Scholar 

  90. Abdel-Wahab O, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114:144–7.

    PubMed  CAS  Google Scholar 

  91. Kohlmann A, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28:3858–65.

    PubMed  CAS  Google Scholar 

  92. Fisher CL, et al. A human homolog of Additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene. 2003;306:115–26.

    PubMed  CAS  Google Scholar 

  93. Cho YS, et al. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem. 2006;281:17588–98.

    PubMed  CAS  Google Scholar 

  94. Carbuccia N, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.

    PubMed  CAS  Google Scholar 

  95. Stein BL, et al. Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica. 2011;96:1462–9.

    PubMed  CAS  Google Scholar 

  96. Gelsi-Boyer V, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010;151:365–75.

    PubMed  CAS  Google Scholar 

  97. Brecqueville M, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer. 2012;51(8):743–55.

    PubMed  CAS  Google Scholar 

  98. Abdel-Wahab O, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25:1200–2.

    PubMed  CAS  Google Scholar 

  99. Ley TJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    PubMed  CAS  Google Scholar 

  100. Stegelmann F, et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia. 2011;25:1217–9.

    PubMed  CAS  Google Scholar 

  101. Guglielmelli P, et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood. 2011;118:5227–34.

    PubMed  CAS  Google Scholar 

  102. Mullighan CG, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    PubMed  CAS  Google Scholar 

  103. Yoshida K, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    PubMed  CAS  Google Scholar 

  104. Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    PubMed  CAS  Google Scholar 

  105. Zhang SJ, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119:4480–5.

    PubMed  CAS  Google Scholar 

  106. Mesa RA. Assessing new therapies and their overall impact in myelofibrosis. Hematol Am Soc Hematol Educ Program. 2010;2010:115–21.

    Google Scholar 

  107. Tibes R, Mesa RA. JAK2 inhibitors in the treatment of myeloproliferative neoplasms: rationale and clinical data. Clin Investig. 2011;1(12):1681–93. http://www.future-science.com/doi/abs/10.4155/cli.11.124. Accessed 2012 Sep 6.

  108. Ma L, et al. Efficacy of LY2784544, a small molecule inhibitor selective for mutant JAK2 kinase, in JAK2 V617F-induced hematologic malignancy models [abstract no. 4087]. Blood. 2010;116(21):4087.

    Google Scholar 

  109. Quintas-Cardama A, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.

    PubMed  CAS  Google Scholar 

  110. Verstovsek S, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363:1117–27.

    PubMed  CAS  Google Scholar 

  111. Verstovsek S, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.

    PubMed  CAS  Google Scholar 

  112. Harrison C, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.

    PubMed  CAS  Google Scholar 

  113. Wernig G, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20.

    PubMed  CAS  Google Scholar 

  114. Pardanani A, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol. 2011;29:789–96.

    PubMed  CAS  Google Scholar 

  115. Verstovsek S, et al. Phase 1/2 study of SB1518, a novel JAK2/FLT3 inhibitor, in the treatment of primary myelofibrosis [abstract no. 3082]. Blood. 2010;116(21):3082.

    Google Scholar 

  116. Deeg H, et al. Phase II study of SB1518, an orally available novel JAK2 inhibitor, in patients with myelofibrosis [abstract no. 6515]. J Clin Oncol. 2011;29(15 Suppl.):6515.

    Google Scholar 

  117. Komrokji RS, et al. Results of a phase 2 study of pacritinib (SB1518), a novel oral JAK2 inhibitor, in patients with primary, post-polycythemia vera, and post-essential thrombocythemia myelofibrosis [abstract no. 282]. Blood. 2011;118(21):282.

    Google Scholar 

  118. Mesa RA, et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res. 2009;33:1199–203.

    PubMed  Google Scholar 

  119. Tyner JW, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115:5232–40.

    PubMed  CAS  Google Scholar 

  120. Santos FP, et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood. 2010;115:1131–6.

    PubMed  CAS  Google Scholar 

  121. Verstovsek S, et al. Phase I study of the JAK2 V617F inhibitor, LY2784544, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) [abstract no. 2814]. Blood. 2011;118(21):2814.

    Google Scholar 

  122. Hedvat M, et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell. 2009;16:487–97.

    PubMed  CAS  Google Scholar 

  123. Shide K, et al. Efficacy of R723, a potent and selective JAK2 inhibitor, in JAK2V617F-induced murine MPD model [abstract no. 3897]. Blood. 2009;114(22):3897.

    Google Scholar 

  124. Purandare AV, et al. Characterization of BMS-911543, a functionally selective small molecule inhibitor of JAK2 [abstract no. 4112]. Blood. 2010;116(21):4112.

    Google Scholar 

  125. Verstovsek S, et al. Durable responses with the JAK1/JAK2 inhibitor, INCB018424, in patients with polycythemia vera (PV) and essential thrombocythemia (ET) refractory or intolerant to hydroxyurea (HU) [abstract no. 313]. Blood. 2010;116(21):313.

    Google Scholar 

  126. Verstovsek S, et al. RESPONSE: a randomized, open label, phase III study of INC424 in polycythemia vera (PV) patients resistant to or intolerant of hydroxyurea (HU) [abstract no. TPS203]. J Clin Oncol. 2011;29(Suppl.):TPS203.

    Google Scholar 

  127. Kiladjian JJ, et al. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22:1990–8.

    PubMed  CAS  Google Scholar 

  128. Kiladjian JJ, et al. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117:4706–15.

    PubMed  CAS  Google Scholar 

  129. Vannucchi AM, et al. A phase 1/2 study of RAD001, a mTOR inhibitor, in patients with myelofibrosis: final results [abstract no. 314]. Blood. 2010;116(21):314.

    Google Scholar 

  130. Mascarenhas J, et al. A phase I study of LBH589, a novel histone deacetylase inhibitor in patients with primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (post-PV/ET MF). Blood. 2009;114(22):308.

    Google Scholar 

  131. Rambaldi A, et al. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol. 2010;150:446–55.

    PubMed  CAS  Google Scholar 

  132. Rambaldi A, et al. A phase II study of the HDAC inhibitor givinostat in combination with hydroxyurea in patients with polycythemia vera resistant to hydroxyurea monotherapy [abstract no. 1748]. Blood. 2011;118(21):1748.

    Google Scholar 

  133. Mesa RA, et al. Phase 1/-2 study of pomalidomide in myelofibrosis. Am J Hematol. 2010;85:129–30.

    PubMed  CAS  Google Scholar 

  134. Brubaker LH, et al. Treatment of anemia in myeloproliferative disorders: a randomized study of fluoxymesterone v transfusions only. Arch Intern Med. 1982;142:1533–7.

    PubMed  CAS  Google Scholar 

  135. Cervantes F, et al. Danazol treatment of idiopathic myelofibrosis with severe anemia. Haematologica. 2000;85:595–9.

    PubMed  CAS  Google Scholar 

  136. Levy V, et al. Treatment of agnogenic myeloid metaplasia with danazol: a report of four cases. Am J Hematol. 1996;53:239–41.

    PubMed  CAS  Google Scholar 

  137. Tibes R, Mesa RA. Evolution of clinical trial endpoints in chronic myeloid leukemia: efficacious therapies require sensitive monitoring techniques. Leuk Res. 2012;36:664–71.

    PubMed  Google Scholar 

  138. Deshpande A, et al. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia. 2012;26:708–15.

    PubMed  CAS  Google Scholar 

  139. Hornakova T, et al. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Haematologica. 2011;96:845–53.

    PubMed  CAS  Google Scholar 

  140. Tibes R, Mesa RA. Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy? Leuk Lymphoma. 2011;52:1178–87.

    PubMed  CAS  Google Scholar 

  141. Cherington C, et al. Allogeneic stem cell transplantation for myeloproliferative neoplasm in blast phase. Leuk Res. 2012;36:1147–51.

    PubMed  Google Scholar 

  142. Kundranda MN, et al. Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep. 2012;7:78–86.

    PubMed  Google Scholar 

  143. Pardanani A, et al. A phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms [abstract no. 460]. Blood. 2010;116(21):460.

    Google Scholar 

  144. Pardanani A, et al. An expanded multicenter phase I/II study of CYT387, a JAK-1/2 inhibitor for the treatment of myelofibrosis [abstract no. 3849]. Blood. 2011;118(21):3849.

    Google Scholar 

Download references

Acknowledgments

Ruben Mesa has received research trial funding from InCyte, Genentech, Lilly, and NS Pharma. Raoul Tibes, James Bogenberger, and Kasey Benson have no conflicts of interest that are directly relevant to the content of this article. No sources of funding were used to prepare this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoul Tibes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibes, R., Bogenberger, J.M., Benson, K.L. et al. Current Outlook on Molecular Pathogenesis and Treatment of Myeloproliferative Neoplasms. Mol Diagn Ther 16, 269–283 (2012). https://doi.org/10.1007/s40291-012-0006-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-012-0006-3

Keywords

Navigation