Skip to main content
Log in

Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Despite the predominance of research on physical performance in the heat, many activities require high cognitive functioning for optimal performance (i.e. decision making) and/or health purposes (i.e. injury risk). Prolonged periods of demanding cognitive activity or exercise-induced fatigue will incur altered cognitive functioning. The addition of hot environmental conditions will exacerbate poor cognitive functioning and negatively affect performance outcomes. The present paper attempts to extract consistent themes from the heat–cognition literature to explore cognitive performance as a function of the level of heat stress encountered. More specifically, experimental studies investigating cognitive performance in conditions of hyperthermia, often via the completion of computerised tasks (i.e. cognitive tests), are used to better understand the relationship between endogenous thermal load and cognitive performance. The existence of an inverted U-shaped relationship between hyperthermia development and cognitive performance is suggested, and highlights core temperatures of ~38.5 °C as the potential ‘threshold’ for hyperthermia-induced negative cognitive performance. From this perspective, interventions to slow or blunt thermal loads and protect both task- and hyperthermia-related changes in task performances (e.g. cooling strategies) could be used to great benefit and potentially preserve cognitive performance during heat strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Altareki N, Drust B, Atkinson G, et al. Effects of environmental heat stress (35 °C) with simulated air movement on the thermoregulatory responses during a 4 km cycling time-trial. Int J Sports Med. 2009;30:9–15.

    Article  CAS  PubMed  Google Scholar 

  2. Guy JH, Deakin GB, Edwards AM, et al. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303–11.

    Article  PubMed  Google Scholar 

  3. Tatterson AJ, Hahn AG, Martin DT, et al. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sports. 2000;3:186–93.

    Article  CAS  Google Scholar 

  4. Racinais S, Périard JD, Karlsen A, et al. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sports Sci Exerc. 2015;47:601–6.

    Article  Google Scholar 

  5. Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl. 1):52–64.

    Article  PubMed  Google Scholar 

  6. Périard JD, Cramer MN, Chapman PG, et al. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.

    Article  PubMed  Google Scholar 

  7. Rasmussen P, Dawson EA, Nybo L, et al. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab. 2007;27(5):1082–93.

    Article  CAS  PubMed  Google Scholar 

  8. Bandelow S, Maughan R, Shirreffs S, et al. The effect of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand J Med Sci Sports. 2010;20(3):148–60.

    Article  PubMed  Google Scholar 

  9. Smits BL, Pepping GJ, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Med. 2014;44(6):763–75.

    Article  PubMed  Google Scholar 

  10. Armstrong LE, Casa DJ, Millard-Stafford M, et al. American College of Sports Medicine. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39:556–72.

    Article  PubMed  Google Scholar 

  11. Zazulak BT, Hewett TE, Reeves NP, et al. The effects of core proprioception on knee injury a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368–73.

    Article  PubMed  Google Scholar 

  12. Lorist MM, Boksem MA, Ridderinkhof KR. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn Brain Res. 2005;24(2):199–205.

    Article  Google Scholar 

  13. Schmit C, Davranche K, Easthope CS, et al. Pushing to the limits: the dynamics of cognitive control during exhausting exercise. Neuropsychologia. 2015;68:71–81.

    Article  PubMed  Google Scholar 

  14. Qian S, Li M, Li G, et al. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study. Behav Brain Res. 2015;280:6–15.

    Article  PubMed  Google Scholar 

  15. McMorris T. Last word on viewpoint: reappraisal of the acute, moderate intensity exercise-catecholamines interaction effect on speed of cognition: role of the vagal/NTS afferent pathway. J Appl Physiol. 2016;120(6):661.

    Article  CAS  PubMed  Google Scholar 

  16. Barbas M. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull. 2000;52:319–30.

    Article  CAS  PubMed  Google Scholar 

  17. Scholey AB, Harper S, Kennedy DO. Cognitive demand and blood glucose. Physiol Behav. 2001;73(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  18. Ramsey JD, Kwon G. Recommended alert limits for perceptual motor loss in hot environments. Int J Ind Ergon. 1992;9:245–57.

    Article  Google Scholar 

  19. Hancock PA. Sustained attention under thermal stress. Psychol Bull. 1986;99:263–81.

    Article  CAS  PubMed  Google Scholar 

  20. Pilcher JJ, Nadler E, Busch C. Effects of hot and cold temperature exposure on performance: a meta-analytic review. Ergonomics. 2002;45:682–98.

    Article  PubMed  Google Scholar 

  21. Liu K, Jiang Q, Li L, et al. Impact of elevated core body temperature on attention networks. Cogn Behav Neurol. 2015;28(4):198–206.

    Article  CAS  PubMed  Google Scholar 

  22. Gaoua N, Racinais S, Grantham J, et al. Alterations in cognitive performance during passive hyperthermia are task-dependent. Int J Hyperthermia. 2011;27(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hancock PA, Warm JS. A dynamic model of stress and sustained attention. Hum Factors. 1989;31:519–37.

    CAS  PubMed  Google Scholar 

  24. Nybo L, Rasmussen P, Sawka MN. Performance in the heat: physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4:657–89.

    Article  PubMed  Google Scholar 

  25. Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperth. 2003;19:355–72.

    Article  CAS  Google Scholar 

  26. Ando S, Kokubu M, Yamada Y, et al. Does cerebral oxygenation affect cognitive function during exercise? Eur J Appl Physiol. 2011;111:1973–82.

    Article  PubMed  Google Scholar 

  27. Grego F, Vallier J-M, Collardeau M, et al. Effects of long duration exercise on cognitive functions, blood glucose, and counterregulatory hormones in males athletes. Neurosci Lett. 2004;364(2):76–80.

    Article  CAS  PubMed  Google Scholar 

  28. Parsons KC. Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance. London: Taylor & Francis; 1993.

    Book  Google Scholar 

  29. Simmons SE, Mündel T, Jones DA, et al. The effects of passive heating and head cooling on perception of exercise in the heat. Eur J Appl Physiol. 2008;104:281–8.

    Article  PubMed  Google Scholar 

  30. Lee JKW, Koh ACH, Koh SXT, et al. Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur J Appl Physiol. 2014;114(2):375–84.

    Article  PubMed  Google Scholar 

  31. Schlader ZJ, Gagnon D, Adams A, et al. Cognitive and perceptual responses during passive heat stress in younger and older adults. Am J Physiol Regul Integr Comp Physiol. 2015;308(10):R847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Razmjou S. Mental workload in heat: toward a framework for analyses of stress state. Aviat Space Environ Med. 1996;67:530–8.

    CAS  PubMed  Google Scholar 

  33. Johnson RF, Kobrick JL. Psychological aspects of military performance in hot environments. In: Pandolf KB, Burr RE, Wenger CB, Pozos RS, editors. Medical aspects of harsh environments, vol. 1. Fort Detrick: U.S. Army Medical Research and Materiel Command; 2001.

    Google Scholar 

  34. McMorris T, Swain J, Smith M, et al. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int J Psychophysiol. 2006;61:204–15.

    Article  PubMed  Google Scholar 

  35. Robbins TW, Everitt BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology. 2007;191:433–7.

    Article  CAS  PubMed  Google Scholar 

  36. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:12–24.

    Article  CAS  PubMed  Google Scholar 

  37. Boas DA, Strangman G, Culver JP, et al. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy? Phys Med Biol. 2003;48(15):2405.

    Article  CAS  PubMed  Google Scholar 

  38. Mohtasib RS, Lumley G, Goodwin JA, et al. Calibrated fMRI during a cognitive Stroop task reveals reduced metabolic response with increasing age. Neuroimage. 2012;59(2):1143–51.

    Article  PubMed  Google Scholar 

  39. Rooks CR, Thom NJ, McCully KK, et al. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol. 2010;92(2):134–50.

    Article  PubMed  Google Scholar 

  40. Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72(4):223–61.

    Article  PubMed  Google Scholar 

  41. Hocking C, Silberstein RB, Lau WM, et al. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol. 2001;128:719–34.

    Article  CAS  Google Scholar 

  42. Aird JW, Webb RD, Hoare J. Heat exposure-induced changes in motor outflow component of reaction time. Percept Mot Skills. 1983;56:699–706.

    Article  CAS  PubMed  Google Scholar 

  43. Liu K, Sun G, Li B, et al. The impact of passive hyperthermia on human attention networks: an fMRI study. Behav Brain Res. 2013;243:220–30.

    Article  PubMed  Google Scholar 

  44. Jiang Q, Yang X, Liu K, et al. Hyperthermia impaired human visual short-term memory: an fMRI study. Int J Hyperthermia. 2013;29(3):219–24.

    Article  PubMed  Google Scholar 

  45. Amos D. Physiological and cognitive performance of soldiers conducting routine patrol and reconnaissance operations in the tropics. Mil Med. 2000;165(12):961.

    CAS  PubMed  Google Scholar 

  46. Hancock PA, Vasmatzidis I. Human occupational and performance limits under stress: the thermal environment as a prototypical example. Ergonomics. 1998;4:1169–91.

    Article  Google Scholar 

  47. Ramsey JD, Kwon YG. Recommended alert limits for perceptual motor loss in hot environments. Int J Ind Ergonom. 1992;9(3):245–57.

    Article  Google Scholar 

  48. Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol. 2008;586:4751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muraven M, Baumeister RF. Self regulation and depletion of limited resources: does self control resemble a muscle? Psychol Bull. 2000;126:247–59.

    Article  CAS  PubMed  Google Scholar 

  50. Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinale contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33:400–5.

    Article  CAS  PubMed  Google Scholar 

  51. Olausson H, Charron J, Marchand S, et al. Feelings of warmth correlate with neural activity in right anterior insular cortex. Neurosci Lett. 2005;389(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt L, Lebreton M, Cléry-Melin M-L, et al. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 2012;10(2):1–13.

    Article  Google Scholar 

  53. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci. 2008;105(34):12569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmidt L, Cléry-Melin M-L, Lafargue G, et al. Get aroused and be stronger: emotional facilitation of physical effort in the human brain. J Neurosci. 2009;29(30):9450–7.

    Article  CAS  PubMed  Google Scholar 

  55. De Pauw K, Roelands B, Marusic U, et al. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol. 2013;115:1324–31.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol. 2001;91:1055–60.

    CAS  PubMed  Google Scholar 

  57. Liu K, Li B, Qian S, et al. Altered interhemispheric resting state functional connectivity during passive hyperthermia. Int J Hyperthermia. 2015;31(8):840–9.

    Article  PubMed  Google Scholar 

  58. Sun G, Qian S, Jiang Q, et al. Hyperthermia-induced disruption of functional connectivity in the human brain network. PLoS One. 2013;8(4):e61157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nybo L, Moller K, Volianitis S, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93:58–64.

    Article  PubMed  Google Scholar 

  60. Schlader ZJ, Lucas RA, Pearson J, et al. Hyperthermia does not alter the increase in cerebral perfusion during cognitive activation. Exp Physiol. 2013;98(11):1597–607.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kirschbaum C, Wolf OT, May M, et al. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58:1475–83.

    Article  CAS  PubMed  Google Scholar 

  62. Hancock PA. Task categorizations and the limits of human performance in extreme heat. Aviat Space Environ Med. 1982;53:778–84.

    CAS  PubMed  Google Scholar 

  63. Ježova D, Kvetňanský R, Vigaš M. Sex differences in endocrine response to hyperthermia in sauna. Acta Physiol Scand. 1994;150(3):293–8.

    Article  PubMed  Google Scholar 

  64. Baars BJ. How does a serial, integrated and very limited stream of consciousness emerge from a nervous system that is mostly unconscious, distributed, parallel and of enormous capacity? Ciba Found Symp. 1993;174:282–90.

    CAS  PubMed  Google Scholar 

  65. Gaoua N. Cognitive function in hot environments: a question of methodology. Scand J Med Sci Sports. 2010;20(3):60–70.

    Article  PubMed  Google Scholar 

  66. Baumeister RF, Bratslavsky E, Muraven M, et al. Ego depletion: is the active self a limited resource? J Pers Soc Psychol. 1998;74(5):1252.

    Article  CAS  PubMed  Google Scholar 

  67. Ross M, Abbiss C, Laursen P, et al. Precooling methods and their effects on athletic performance. Sports Med. 2013;43(3):207–25.

    Article  PubMed  Google Scholar 

  68. Bongers CC, Thijssen DH, Veltmeijer MT, et al. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2014;19:2013–092928.

    Google Scholar 

  69. Cuddy JS, Hailes WS, Ruby BC. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Thermal Biol. 2014;43:7–12.

    Article  Google Scholar 

  70. Gaoua N, Grantham J, Racinais S, et al. Sensory displeasure reduces complex cognitive performance in the heat. J Exp Psychol. 2012;32(2):158–63.

    Google Scholar 

  71. Byrne C, Owen C, Cosnefroy A, et al. Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. J Athl Train. 2011;46:592–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stevens CJ, Dascombe B, Boyko A, et al. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J Sports Sci. 2013;31:1271–9.

    Article  PubMed  Google Scholar 

  73. Clarke ND, Duncan MJ, Smith M, et al. Pre-cooling moderately enhances visual discrimination during exercise in the heat. J Sport Sci. 2016. doi:10.1080/02640414.2016.1164885

    Google Scholar 

  74. Armada-da-Silva PAS, Woods J, Jones DA. The effect of passive heating and face cooling on perceived exertion during exercise in the heat. Eur J Appl Physiol. 2004;91:563–71.

    Article  CAS  PubMed  Google Scholar 

  75. Desruelle AV, Candas V. Thermoregulatory effects of three different types of head cooling in humans during a mild hyperthermia. Eur J Appl Physiol. 2000;81:33–9.

    Article  CAS  PubMed  Google Scholar 

  76. Minett MG, Duffield R, Kellett A, et al. Mixed-method pre-cooling reduces physiological demands without improving performance of medium-fast bowling in the heat. J Sport Sci. 2012;30(9):907–15.

    Article  Google Scholar 

  77. Palmer CD, Sleivert GG, Cotter JD. The effects of head and neck cooling on thermoregulation, pace selection and performance. In: Proceedings of the international thermal physiology symposium, vol. 32. Australian Physiological and Pharmacological Society. Wollongong (NSW); 2001. p. 122.

  78. Tyler CJ, Wild P, Sunderland C. Practical neck cooling and time-trial running performance in a hot environment. Eur J Appl Physiol. 2010;110:1063–74.

    Article  PubMed  Google Scholar 

  79. Tyler CJ, Sunderland C. Neck cooling and running performance in the heat: single versus repeated application. Med Sci Sports Exerc. 2011;43(12):2388–95.

    Article  PubMed  Google Scholar 

  80. Katsuura T, Tomioka K, Harada H, et al. Effects of cooling portions of the head on human thermoregulatory response. Appl Human Sci. 1996;15:67–74.

    Article  CAS  PubMed  Google Scholar 

  81. Masento NA, Golightly M, Field DT, et al. Effects of hydration status on cognitive performance and mood. Br J Nutr. 2014;111(10):1841–52.

    Article  CAS  PubMed  Google Scholar 

  82. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9(7):568–78.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sawka MN, Pandolf KB. Effects of body water loss on physiological function and exercise performance. Perspectives in exercise science and sports medicine. In: Gisolfi CV, Lamb DR, editors. Fluid homeostasis during exercise. vol. 3. Carmel: Brown and Benchmark; 1990. p. 1–38.

  84. Cian C, Barraud PA, Melin B, et al. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol. 2001;42:243–51.

    Article  CAS  PubMed  Google Scholar 

  85. Vázquez CC, Sánchez MV, Sánchez JC, et al. Dehydration, cognitive and skill performance in sport. Systematic review. Nutr Hosp. 2015;32(Suppl 2):24.

    Google Scholar 

  86. Kempton MJ, Ettinger U, Foster R, et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Map. 2011;32(1):71–9.

    Article  Google Scholar 

  87. Comijs HC, Gerritsen L, Penninx BW, et al. The association between serum cortisol and cognitive decline in older persons. Am J Geriatr Psychiatry. 2010;18(1):42–50.

    Article  PubMed  Google Scholar 

  88. Maughan RJ, Shirreffs SM, Watson P. Exercise, heat, hydration and the brain. J Am Coll Nutr. 2007;26(Suppl 5):604S–12S.

    Article  CAS  PubMed  Google Scholar 

  89. Armstrong LE, Ganio MS, Casa DJ, et al. Mild dehydration affects mood in healthy young women. J Nutr. 2012;142(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  90. Gorby HE, Brownawell AM, Falk MC. Do specific dietary constituents and supplements affect mental energy? Review of the evidence. Nutr Rev. 2010;68(12):697–718.

    Article  PubMed  Google Scholar 

  91. Lieberman HR. Hydration and cognition: a critical review and recommendations for future research. J Am Coll Nutr. 2007;26(5):555–61.

    Article  Google Scholar 

  92. Edmonds CJ, Crombie R, Ballieux H, et al. Water consumption, not expectancies about water consumption, affects cognitive performance in adults. Appetite. 2013;60:148–53.

    Article  PubMed  Google Scholar 

  93. Rogers PJ, Kainth A, Smit HJ. A drink of water can improve or impair mental performance depending on small differences in thirst. Appetite. 2001;36(1):57–8.

    Article  CAS  PubMed  Google Scholar 

  94. Siegel R, Mate J, Brearley MB, et al. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc. 2010;42(4):717–25.

    Article  PubMed  Google Scholar 

  95. Coyle EF, Gonzalez-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29(2):88–92.

    Article  CAS  PubMed  Google Scholar 

  96. Sawka MN, Montain SJ. Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr. 2000;72(2):564s–72s.

    CAS  PubMed  Google Scholar 

  97. Butts CL, Luhring KE, Smith CR, et al. Effects of mild hypohydration on cooling during cold-water immersion following exertional hyperthermia. Eur J Appl Physiol. 2016;116(4):687–95.

    Article  CAS  PubMed  Google Scholar 

  98. Gold PE. Role of glucose in regulating the brain and cognition. Am J Clin Nutr. 1995;61(4):987S–95S.

    CAS  PubMed  Google Scholar 

  99. Shirreffs SM, Taylor AJ, Leiper JB, et al. Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc. 1996;28(10):1260–71.

    Article  CAS  PubMed  Google Scholar 

  100. Brisswalter J, Collardeau M, Arcellin R. Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 2002;32:555–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Schmit.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Cyril Schmit, Christophe Hausswirth, Yann Le Meur and Rob Duffield declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmit, C., Hausswirth, C., Le Meur, Y. et al. Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies. Sports Med 47, 1289–1302 (2017). https://doi.org/10.1007/s40279-016-0657-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0657-z

Keywords

Navigation