Skip to main content
Log in

Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Increasing knowledge in the field of rare diseases has led to new therapeutic approaches in the last decade. Treatment strategies have been developed after elucidation of the underlying genetic alterations and pathophysiology of certain diseases (e.g., in osteogenesis imperfecta, achondroplasia, hypophosphatemic rickets, hypophosphatasia and fibrodysplasia ossificans progressiva). Most of the drugs developed are specifically designed agents interacting with the disease-specific cascade of enzymes and proteins involved. While some are approved (asfotase alfa, burosumab), others are currently being investigated in phase III trials (denosumab, vosoritide, palovarotene). To offer a multi-disciplinary therapeutic approach, it is recommended that patients with rare skeletal disorders are treated and monitored in highly specialized centers. This guarantees the greatest safety for the individual patient and offers the possibility of collecting data to further improve treatment strategies for these rare conditions. Additionally, new therapeutic options could be achieved through increased awareness, not only in the field of pediatrics but also in prenatal and obstetric specialties. Presenting new therapeutic options might influence families in their decision of whether or not to terminate a pregnancy with a child with a skeletal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evangelista T, et al. The context for the thematic grouping of rare diseases to facilitate the establishment of European Reference Networks. Orphanet J Rare Dis. 2016;11:17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heon-Klin V. European Reference networks for rare diseases: what is the conceptual framework? Orphanet J Rare Dis. 2017;12(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nampoothiri S, et al. Eight years experience from a skeletal dysplasia referral center in a tertiary hospital in Southern India: a model for the diagnosis and treatment of rare diseases in a developing country. Am J Med Genet A. 2014;164A(9):2317–23.

    Article  PubMed  Google Scholar 

  4. Ben Amor IM, Glorieux FH, Rauch F. Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011;2011:540178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caparros-Martin JA, et al. Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotype-phenotype correlations. Am J Med Genet A. 2013;161A(6):1354–69.

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann C, et al. Unexpected high intrafamilial phenotypic variability observed in hypophosphatasia. Eur J Hum Genet. 2014;22(10):1160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al Kaissi A, et al. The Diversity of the clinical phenotypes in patients with fibrodysplasia ossificans progressiva. J Clin Med Res. 2016;8(3):246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yeh P, et al. Accuracy of prenatal diagnosis and prediction of lethality for fetal skeletal dysplasias. Prenat Diagn. 2011;31(5):515–8.

    Article  PubMed  Google Scholar 

  9. Cozzolino M, et al. Ultrasonographic early diagnosis of osteogenesis imperfecta type I: implications for pre and post-natal therapy. Arch Gynecol Obstet. 2016;294(1):215–6.

    Article  PubMed  Google Scholar 

  10. Bellur S, et al. Cesarean delivery is not associated with decreased at-birth fracture rates in osteogenesis imperfecta. Genet Med. 2016;18(6):570–6.

    Article  CAS  PubMed  Google Scholar 

  11. Savarirayan R, et al. Best practice guidelines regarding prenatal evaluation and delivery of patients with skeletal dysplasia. Am J Obstet Gynecol. 2018;219(6):545–62.

    Article  PubMed  Google Scholar 

  12. Bonafe L, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869–92.

    Article  CAS  PubMed  Google Scholar 

  13. Fratzl-Zelman N, et al. Classification of osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):264–70.

    Article  PubMed  Google Scholar 

  14. Becker J, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;88(3):362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoyer-Kuhn H, Rehberg M, Semler O. Angeborene Skeletterkrankungen. Monatsschrift Kinderheilkunde. 2017;165(8):663–71.

    Article  Google Scholar 

  16. Beccard R, et al. Do bone mineral density, bone geometry and the functional muscle-bone unit explain bone fractures in healthy children and adolescents? Horm Res Paediatr. 2010;74(5):312–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schonau E, et al. Influence of muscle strength on bone strength during childhood and adolescence. Horm Res. 1996;45(Suppl 1):63–6.

    PubMed  Google Scholar 

  18. Rittweger J, et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone. 2005;36(6):1019–29.

    Article  PubMed  Google Scholar 

  19. Shore EM, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38(5):525–7.

    Article  CAS  PubMed  Google Scholar 

  20. Komarova SV, et al. Mathematical model for bone mineralization. Front Cell Dev Biol. 2015;3:51.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roschger P, et al. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep. 2014;12(3):338–50.

    Article  PubMed  Google Scholar 

  22. van Meurs JB, et al. Role of epigenomics in bone and cartilage disease. J Bone Miner Res. 2019;34(2):215–30.

    PubMed  Google Scholar 

  23. Morris JA, et al. Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J Bone Miner Res. 2017;32(8):1644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Rebollo E, et al. Primary osteoporosis is not reflected by disease-specific DNA methylation or accelerated epigenetic age in blood. J Bone Miner Res. 2018;33(2):356–61.

    Article  CAS  PubMed  Google Scholar 

  25. Ward LM, Rauch F. Anabolic therapy for the treatment of osteoporosis in childhood. Curr Osteoporos Rep. 2018;16(3):269–76.

    Article  PubMed  Google Scholar 

  26. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71.

    Article  CAS  PubMed  Google Scholar 

  27. Marini JC, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.

    Article  PubMed  Google Scholar 

  28. Mueller B, et al. Consensus statement on physical rehabilitation in children and adolescents with osteogenesis imperfecta. Orphanet J Rare Dis. 2018;13(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoyer-Kuhn H, et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445–53.

    CAS  PubMed  Google Scholar 

  30. Hogler W, et al. The effect of whole body vibration training on bone and muscle function in children with osteogenesis imperfecta. J Clin Endocrinol Metab. 2017;102(8):2734–43.

    Article  PubMed  Google Scholar 

  31. Ruck J, et al. Fassier–Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5(3):217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ashby E, et al. Functional outcome of humeral rodding in children with osteogenesis imperfecta. J Pediatr Orthop. 2018;38(1):49–53.

    Article  PubMed  Google Scholar 

  33. Wirth T. Osteogenesis imperfecta. Orthopade. 2012;41(9):773–82 (quiz 83–4).

    Article  CAS  PubMed  Google Scholar 

  34. Franzone JM, Kruse RW. Intramedullary nailing with supplemental plate and screw fixation of long bones of patients with osteogenesis imperfecta: operative technique and preliminary results. J Pediatr Orthop B. 2018;27(4):344–9.

    PubMed  Google Scholar 

  35. Astrom E, Soderhall S. Beneficial effect of bisphosphonate during five years of treatment of severe osteogenesis imperfecta. Acta Paediatr. 1998;87(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  36. Glorieux FH, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52.

    Article  CAS  PubMed  Google Scholar 

  37. Gatti D, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20(5):758–63.

    Article  CAS  PubMed  Google Scholar 

  38. Antoniazzi F, et al. Early bisphosphonate treatment in infants with severe osteogenesis imperfecta. J Pediatr. 2006;149(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  39. Adami S, et al. Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res. 2003;18(1):126–30.

    Article  CAS  PubMed  Google Scholar 

  40. Semler O, et al. Reshaping of vertebrae during treatment with neridronate or pamidronate in children with osteogenesis imperfecta. Horm Res Paediatr. 2011;76(5):321–7.

    Article  CAS  PubMed  Google Scholar 

  41. Panigrahi I, et al. Response to zolendronic acid in children with type III osteogenesis imperfecta. J Bone Miner Metab. 2010;28(4):451–5.

    Article  CAS  PubMed  Google Scholar 

  42. Kumar C, et al. Zoledronate for osteogenesis imperfecta: evaluation of safety profile in children. J Pediatr Endocrinol Metab. 2016;29(8):947–52.

    Article  CAS  PubMed  Google Scholar 

  43. Saraff V, et al. Efficacy and treatment costs of zoledronate versus pamidronate in paediatric osteoporosis. Arch Dis Child. 2018;103(1):92–4.

    Article  PubMed  Google Scholar 

  44. Dwan K, et al. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2016;10:CD005088.

    PubMed  Google Scholar 

  45. Glorieux FH, et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res. 2002;17(1):30–8.

    Article  PubMed  Google Scholar 

  46. Land C, et al. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone. 2007;40(3):638–44.

    Article  CAS  PubMed  Google Scholar 

  47. Semler O, et al. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.

    CAS  PubMed  Google Scholar 

  48. Hoyer-Kuhn H, et al. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9(1):145.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hoyer-Kuhn H, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect—a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grasemann C, et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98(8):3121–6.

    Article  CAS  PubMed  Google Scholar 

  51. Trejo P, Rauch F, Ward L. Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2018;18(1):76–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bandeira F, et al. Multiple severe vertebral fractures during the 3-month period following a missed dose of denosumab in a postmenopausal woman with osteoporosis previously treated with alendronate. Int J Clin Pharmacol Ther. 2019;57(3):163–6.

    Article  PubMed  Google Scholar 

  53. Cummings SR, et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res. 2018;33(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  54. Florez H, et al. Spontaneous vertebral fractures after denosumab discontinuation: a case collection and review of the literature. Semin Arthritis Rheum. 2019. https://doi.org/10.1016/j.semarthrit.2019.02.007.

    Article  PubMed  Google Scholar 

  55. Perosky JE, et al. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone. 2016;93:79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams BO. Insights into the mechanisms of sclerostin action in regulating bone mass accrual. J Bone Miner Res. 2014;29(1):24–8.

    Article  PubMed  Google Scholar 

  57. McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis. 2017;9(10):263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sinder BP, et al. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28(1):73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Glorieux FH, et al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017;32(7):1496–504.

    Article  CAS  PubMed  Google Scholar 

  60. Horwitz EM, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA. 2002;99(13):8932–7.

    Article  CAS  PubMed  Google Scholar 

  61. Horwitz EM, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  62. Le Blanc K, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.

    Article  PubMed  Google Scholar 

  63. Chan JK, Gotherstrom C. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta. Front Pharmacol. 2014;5:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gotherstrom C, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  65. Westgren M, Gotherstrom C. Stem cell transplantation before birth—a realistic option for treatment of osteogenesis imperfecta? Prenat Diagn. 2015;35(9):827–32.

    Article  PubMed  Google Scholar 

  66. Chitty LS, et al. EP21.04: BOOSTB4: a clinical study to determine safety and efficacy of pre- and/or postnatal stem cell transplantation for treatment of osteogenesis imperfecta. Ultrasound Obstet Gynecol. 2016;48(Suppl 1):356.

    Google Scholar 

  67. Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ceroni JRM, et al. Natural history of 39 patients with achondroplasia. Clinics (Sao Paulo). 2018;73:e324.

    Article  Google Scholar 

  69. Zaffanello M, et al. Sleep disordered breathing in children with achondroplasia. World J Pediatr. 2017;13(1):8–14.

    Article  PubMed  Google Scholar 

  70. Park KW, et al. Limb lengthening in patients with achondroplasia. Yonsei Med J. 2015;56(6):1656–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nadel JL, et al. Screening and surgery for foramen magnum stenosis in children with achondroplasia: a large, national database analysis. J Neurosurg Pediatr. 2018;23(3):374–80.

    Article  PubMed  Google Scholar 

  72. Miccoli M, Bertelloni S, Massart F. Height outcome of recombinant human growth hormone treatment in achondroplasia children: a meta-analysis. Horm Res Paediatr. 2016;86(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  73. Lorget F, et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet. 2012;91(6):1108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krejci P. The paradox of FGFR3 signaling in skeletal dysplasia: why chondrocytes growth arrest while other cells over proliferate. Mutat Res Rev Mutat Res. 2014;759:40–8.

    Article  CAS  PubMed  Google Scholar 

  75. Legeai-Mallet L. C-type natriuretic peptide analog as therapy for achondroplasia. Endocr Dev. 2016;30:98–105.

    Article  CAS  PubMed  Google Scholar 

  76. Yamanaka S, et al. Circulatory CNP rescues craniofacial hypoplasia in achondroplasia. J Dent Res. 2017;96(13):1526–34.

    Article  CAS  PubMed  Google Scholar 

  77. Garcia S, et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med. 2013;5(203):203ra124.

    Article  CAS  PubMed  Google Scholar 

  78. Pavone V, et al. Hypophosphatemic rickets: etiology, clinical features and treatment. Eur J Orthop Surg Traumatol. 2015;25(2):221–6.

    Article  PubMed  Google Scholar 

  79. Shimada T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig. 2004;113(4):561–8.

    Article  CAS  PubMed  Google Scholar 

  80. Verge CF, et al. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991;325(26):1843–8.

    Article  CAS  PubMed  Google Scholar 

  81. Makitie O, et al. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88(8):3591–7.

    Article  CAS  PubMed  Google Scholar 

  82. Carpenter TO, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Investig. 2014;124(4):1587–97.

    Article  CAS  PubMed  Google Scholar 

  83. Carpenter TO, et al. Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med. 2018;378(21):1987–98.

    Article  CAS  PubMed  Google Scholar 

  84. Whyte MP, et al. Efficacy and safety of burosumab in children aged 1–4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(3):189–99.

    Article  PubMed  Google Scholar 

  85. Whyte MP. Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233–46.

    Article  CAS  PubMed  Google Scholar 

  86. Mornet E, et al. Clinical utility gene card for: hypophosphatasia—update 2013. Eur J Hum Genet. 2014. https://doi.org/10.1038/ejhg.2013.177.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Whyte MP. Hypophosphatasia: an overview for 2017. Bone. 2017;102:15–25.

    Article  CAS  PubMed  Google Scholar 

  88. Whyte MP, Wenkert D, Zhang F. Hypophosphatasia: natural history study of 101 affected children investigated at one research center. Bone. 2016;93:125–38.

    Article  PubMed  Google Scholar 

  89. Zierk J, et al. Pediatric reference intervals for alkaline phosphatase. Clin Chem Lab Med. 2017;55(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  90. Whyte MP, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904–13.

    Article  CAS  PubMed  Google Scholar 

  91. Whyte MP, et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab. 2016;101(1):334–42.

    Article  CAS  PubMed  Google Scholar 

  92. Kitaoka T, et al. Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: Results from a Japanese clinical trial. Clin Endocrinol (Oxf). 2017;87(1):10–9.

    Article  CAS  Google Scholar 

  93. Hofmann CE, et al. Efficacy and safety of asfotase alfa in infants and young children with hypophosphatasia: a phase 2 open-label study. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2018-02335.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shore EM, Kaplan FS. Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol. 2010;6(9):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaplan FS, et al. Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheumatol. 2008;22(1):191–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimono K, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat Med. 2011;17(4):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol. 2018. https://doi.org/10.1111/bcp.13823.

    Article  Google Scholar 

  98. Luo Y, et al. Development of new therapeutic agents for fibrodysplasia ossificans progressiva. Curr Mol Med. 2016;16(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  99. Kaplan FS, et al. Palovarotene reduces new heterotopic ossification in fibrodysplasia ossificans progressiva (FOP). JBMR. 2018;33(Suppl 1):MON-1066.

    Google Scholar 

  100. Inubushi T, et al. Palovarotene inhibits osteochondroma formation in a mouse model of multiple hereditary exostoses. J Bone Miner Res. 2018;33(4):658–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Semler.

Ethics declarations

Funding

Parts of this work were supported by “Deutsche Forschungsgemeinschaft” through Grant FOR 2722 to authors OS and MR.

Conflict of interest

HHK, MR and OS have received speaker’s fees and travel Grants from different companies in the past. HHK and OS have received research Grants from Amgen and Alexion. NM and MJ have not received any support from companies producing drugs mentioned in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semler, O., Rehberg, M., Mehdiani, N. et al. Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases. Pediatr Drugs 21, 95–106 (2019). https://doi.org/10.1007/s40272-019-00330-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00330-0

Navigation