Skip to main content
Log in

Antihypertensive Drugs, Prevention of Cognitive Decline and Dementia: A Systematic Review of Observational Studies, Randomized Controlled Trials and Meta-Analyses, with Discussion of Potential Mechanisms

  • Systematic Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Background

Chronic hypertension, particularly midlife high blood pressure, has been associated with an increased risk for cognitive decline and dementia. In this context, antihypertensive drugs might have a preventive effect, but the association remains poorly understood.

Objectives

The aim of this systematic review was to examine all published findings that investigated this relationship and discuss the mechanisms underlying the potential benefits of antihypertensive medication use.

Methods

A literature search was conducted using MEDLINE, Embase, and the Cochrane Library for publications from 1990 onwards mentioning hypertension, antihypertensive drugs, cognitive decline, and dementia.

Results

A total of 38 relevant publications, corresponding to 18 longitudinal studies, 11 randomized controlled trials, and nine meta-analyses were identified from the 10,251 articles retrieved in the literature search. In total, 1,346,176 subjects were included in these studies; the average age was 74 years. In the seven longitudinal studies assessing the effect of antihypertensive medication on cognitive impairment or cognitive decline, antihypertensive drugs appeared to be beneficial. Of the 11 longitudinal studies that assessed the effect of antihypertensive medication on incidence of dementia, only three did not find a significant protective effect. Antihypertensive medication could decrease the risk of not only vascular dementia but also Alzheimer’s disease. Four randomized controlled trials showed a potentially preventive effect of antihypertensive drugs on the incidence of dementia or cognitive decline: SYST-EUR (Systolic Hypertension in Europe Study) I and II, with a 55 % reduction in dementia risk (3.3 vs. 7.4 cases per 1,000 patient years; p < 0.001); HOPE (Heart Outcomes Prevention Evaluation), with a 41 % reduction in cognitive decline associated with stroke (95 % confidence interval [CI] 6–63); and PROGRESS (Perindopril Protection against Recurrent Stroke Study), with a 19 % reduction in cognitive decline (95 % CI 4–32; p = 0.01). Meta-analyses have sometimes produced conflicting results, but this may be due to methodological considerations. The lack of homogeneity across study designs, patient populations, exposition, outcomes, and duration of follow-up are the most important methodological limitations that might explain the discrepancies between some of these studies.

Conclusion

Antihypertensive drugs, particularly calcium channel blockers and renin–angiotensin system blockers, may be beneficial in preventing cognitive decline and dementia. However, further randomized controlled trials with longer periods of follow-up and cognition as the primary outcome are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Viswanathan A, Rocca WA, Tzourio C. Vascular risk factors and dementia: how to move forward? Neurology. 2009;72(4):368–74.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487–99.

    Article  PubMed  Google Scholar 

  4. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339–b2535.

  5. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  6. Shah K, Qureshi SU, Johnson M, Parikh N, Schulz PE, Kunik ME. Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review. Am J Geriatr Pharmacother. 2009;7(5):250–61.

    Article  CAS  PubMed  Google Scholar 

  7. Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169(13):1195–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hanon O, Berrou J-P, Negre-Pages L, Goch JH, Nádházi Z, Petrella R, et al. Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the Observational Study on Cognitive function And Systolic Blood Pressure Reduction open-label study. J Hypertens. 2008;26(8):1642–50.

    Article  CAS  PubMed  Google Scholar 

  9. Li N-C, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Johnson ML, Parikh N, Kunik ME, Schulz PE, Patel JG, Chen H, et al. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Dement J Alzheimers Assoc. 2012;8(5):437–44.

    Article  CAS  Google Scholar 

  11. Soto ME, van Kan GA, Nourhashemi F, Gillette-Guyonnet S, Cesari M, Cantet C, et al. Angiotensin-converting enzyme inhibitors and Alzheimer’s disease progression in older adults: results from the Réseau sur la Maladie d’Alzheimer Français Cohort. J Am Geriatr Soc. 2013;61(9):1482–8.

    Article  PubMed  Google Scholar 

  12. Bosch J, Yusuf S, Pogue J, Sleight P, Lonn E, Rangoonwala B, et al. Use of ramipril in preventing stroke: double blind randomised trial. BMJ. 2002;324(7339):699–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Diener H-C, Sacco RL, Yusuf S, Cotton D, Ounpuu S, Lawton WA, et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. Lancet Neurol. 2008;7(10):875–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163(9):1069–75.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson C, Teo K, Gao P, Arima H, Dans A, Unger T, et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011;10(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  16. Tzourio C, Dufouil C, Ducimetière P, Alpérovitch A. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA Study Group. Epidemiology of vascular aging. Neurology. 1999;53(9):1948–52.

    Article  CAS  PubMed  Google Scholar 

  17. Murray MD, Lane KA, Gao S, Evans RM, Unverzagt FW, Hall KS, et al. Preservation of cognitive function with antihypertensive medications: a longitudinal analysis of a community-based sample of African Americans. Arch Intern Med. 2002;162(18):2090–6.

    Article  PubMed  Google Scholar 

  18. Hajjar I, Catoe H, Sixta S, Boland R, Johnson D, Hirth V, et al. Cross-sectional and longitudinal association between antihypertensive medications and cognitive impairment in an elderly population. J Gerontol A Biol Sci Med Sci. 2005;60(1):67–73.

    Article  PubMed  Google Scholar 

  19. Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, White LR. Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology. 2013;81(10):888–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Qiu C, von Strauss E, Fastbom J, Winblad B, Fratiglioni L. Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Arch Neurol. 2003;60(2):223–8.

    Article  PubMed  Google Scholar 

  21. Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63(5):686–92.

    Article  PubMed  Google Scholar 

  22. Peila R, White LR, Masaki K, Petrovitch H, Launer LJ. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke J Cereb Circ. 2006;37(5):1165–70.

    Article  Google Scholar 

  23. Yasar S, Xia J, Yao W, Furberg CD, Xue Q-L, Mercado CI, et al. Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo Evaluation of Memory Study. Neurology. 2013;81(10):896–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haag MDM, Hofman A, Koudstaal PJ, Breteler MMB, Stricker BHC. Duration of antihypertensive drug use and risk of dementia: a prospective cohort study. Neurology. 2009;72(20):1727–34.

    Article  CAS  PubMed  Google Scholar 

  25. In’t Veld BA, Ruitenberg A, Hofman A, Stricker BH, Breteler MM. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging. 2001;22(3):407–12.

    Article  PubMed  Google Scholar 

  26. Morris MC, Scherr PA, Hebert LE, Glynn RJ, Bennett DA, Evans DA. Association of incident Alzheimer disease and blood pressure measured from 13 years before to 2 years after diagnosis in a large community study. Arch Neurol. 2001;58(10):1640–6.

    Article  CAS  PubMed  Google Scholar 

  27. Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156(5):445–53.

    Article  PubMed  Google Scholar 

  28. Yasar S, Corrada M, Brookmeyer R, Kawas C. Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol Aging. 2005;26(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  29. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):145–53.

    Article  CAS  PubMed  Google Scholar 

  30. No authors listed. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ. 1992;304(6824):405–12.

    Article  Google Scholar 

  31. Prince MJ, Bird AS, Blizard RA, Mann AH. Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the Medical Research Council’s trial of hypertension in older adults. BMJ. 1996;312(7034):801–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21(5):875–86.

    Article  CAS  PubMed  Google Scholar 

  33. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.

    Article  CAS  PubMed  Google Scholar 

  34. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7(8):683–9.

    Article  CAS  PubMed  Google Scholar 

  35. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhäger WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350(9080):757–64.

    Article  CAS  PubMed  Google Scholar 

  36. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhäger WH, Babarskiene MR, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352(9137):1347–51.

    Article  CAS  PubMed  Google Scholar 

  37. Forette F, Seux M-L, Staessen JA, Thijs L, Babarskiene M-R, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046–52.

    Article  PubMed  Google Scholar 

  38. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA. 1991;265(24):3255–64.

  39. Applegate WB, Pressel S, Wittes J, Luhr J, Shekelle RB, Camel GH, et al. Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program. Arch Intern Med. 1994;154(19):2154–60.

    Article  CAS  PubMed  Google Scholar 

  40. Di Bari M, Pahor M, Franse LV, Shorr RI, Wan JY, Ferrucci L, et al. Dementia and disability outcomes in large hypertension trials: lessons learned from the systolic hypertension in the elderly program (SHEP) trial. Am J Epidemiol. 2001;153(1):72–8.

    Article  PubMed  Google Scholar 

  41. Chang-Quan H, Hui W, Chao-Min W, Zheng-Rong W, Jun-Wen G, Yong-Hong L, et al. The association of antihypertensive medication use with risk of cognitive decline and dementia: a meta-analysis of longitudinal studies. Int J Clin Pract. 2011;65(12):1295–305.

    Article  CAS  PubMed  Google Scholar 

  42. Guan J-W, Huang C-Q, Li Y-H, Wan C-M, You C, Wang Z-R, et al. No association between hypertension and risk for Alzheimer’s disease: a meta-analysis of longitudinal studies. J Alzheimers Dis JAD. 2011;27(4):799–807.

    Google Scholar 

  43. Feigin V, Ratnasabapathy Y, Anderson C. Does blood pressure lowering treatment prevents dementia or cognitive decline in patients with cardiovascular and cerebrovascular disease? J Neurol Sci. 2005;229–230:151–5.

    Article  PubMed  Google Scholar 

  44. Birns J, Morris R, Donaldson N, Kalra L. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens. 2006;24(10):1907–14.

    Article  CAS  PubMed  Google Scholar 

  45. Birkenhäger WH, Staessen JA. Progress in cardiovascular diseases: cognitive function in essential hypertension. Prog Cardiovasc Dis. 2006;49(1):1–10.

    Article  PubMed  Google Scholar 

  46. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev Online. 2009;4:CD004034.

    Google Scholar 

  47. López-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002;3:CD000147.

    PubMed  Google Scholar 

  48. Levi Marpillat N, Macquin-Mavier I, Tropeano A-I, Bachoud-Levi A-C, Maison P. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013;31(6):1073–82.

    Article  CAS  PubMed  Google Scholar 

  49. Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M. Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the Helsinki Stroke Aging Memory Study (SAM) cohort. Stroke. 1997;28(4):785–92.

    Article  CAS  PubMed  Google Scholar 

  50. Kokmen E, Whisnant JP, O’Fallon WM, Chu CP, Beard CM. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960–1984). Neurology. 1996;46(1):154–9.

    Article  CAS  PubMed  Google Scholar 

  51. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, Godwin J, Qizilbash N, Taylor JO, Hennekens CH. Blood pressure, stroke, and coronary heart disease. Part 2. Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335(8693):827–38 (Review).

    Article  CAS  PubMed  Google Scholar 

  52. Birkenhäger WH, Forette F, Seux ML, Wang JG, Staessen JA. Blood pressure, cognitive performance, and prevention of dementias in older patients with hypertension. Arch Intern Med. 2001;161:152–6.

    Article  PubMed  Google Scholar 

  53. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000;21(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez OL, Kuller LH, Becker JT, et al. Classification of vascular dementia in the Cardiovascular Health Study Cognition Study. Neurology. 2005;64:1539–47.

    Article  CAS  PubMed  Google Scholar 

  55. Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2008;28(12):1877–91.

    Article  Google Scholar 

  56. Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis Risk in Communities Study. Stroke J Cereb Circ. 1996;27(12):2262–70.

    Article  CAS  Google Scholar 

  57. Suter O-C, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, et al. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke J Cereb Circ. 2002;33(8):1986–92.

    Article  Google Scholar 

  58. Pasquier F, Leys D. Why are stroke patients prone to develop dementia? J Neurol. 1997;244(3):135–42.

    Article  CAS  PubMed  Google Scholar 

  59. Hardy JA, Mann DM, Wester P, Winblad B. An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease. Neurobiol Aging. 1986;7(6):489–502.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao F-F, et al. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem. 2007;282(15):10873–80.

    Article  CAS  PubMed  Google Scholar 

  61. Iadecola C, Park L, Capone C. Threats to the mind: aging, amyloid, and hypertension. Stroke J Cereb Circ. 2009;40(3 Suppl):S40–4.

    Article  Google Scholar 

  62. Angeli F, Verdecchia P, Reboldi GP, Gattobigio R, Bentivoglio M, Staessen JA, Porcellati C. Calcium channel blockade to prevent stroke in hypertension: a meta-analysis of 13 studies with 103.793 subjects. Am J Hypertens. 2004;17:817–22.

    CAS  PubMed  Google Scholar 

  63. Berridge MJ. Calcium signalling and Alzheimer’s disease. Neurochem Res. 2011;36(7):1149–56.

    Article  CAS  PubMed  Google Scholar 

  64. Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell. 2007;6(3):307–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Thibault O, Landfield PW. Increase in single L-type calcium channels in hippocampal neurons during aging. Science. 1996;272(5264):1017–20.

    Article  CAS  PubMed  Google Scholar 

  66. Pierrot N, Ghisdal P, Caumont A-S, Octave J-N. Intraneuronal amyloid-beta1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem. 2004;88(5):1140–50.

    Article  CAS  PubMed  Google Scholar 

  67. Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry (Mosc). 1994;33(15):4550–61.

    Article  CAS  Google Scholar 

  68. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron. 1990;4(1):105–17.

    Article  CAS  PubMed  Google Scholar 

  69. Nixon RA. The calpains in aging and aging-related diseases. Ageing Res Rev. 2003;2(4):407–18.

    Article  CAS  PubMed  Google Scholar 

  70. Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer’s disease. Neuron. 2008;59(2):190–4.

    Article  CAS  PubMed  Google Scholar 

  71. Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu H-Y, Hyman BT, Bacskai BJ. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron. 2008;59(2):214–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yu J-T, Chang RC-C, Tan L. Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. Prog Neurobiol. 2009;89(3):240–55.

    Article  CAS  PubMed  Google Scholar 

  73. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997;77(4):1081–132.

    CAS  PubMed  Google Scholar 

  74. Furukawa K, Wang Y, Yao PJ, Fu W, Mattson MP, Itoyama Y, et al. Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. J Neurochem. 2003;87(2):427–36.

    Article  CAS  PubMed  Google Scholar 

  75. Trompet S, Westendorp RGJ, Kamper AM, de Craen AJM. Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol Aging. 2008;29(2):306–8.

    Article  CAS  PubMed  Google Scholar 

  76. Barnes JM, Barnes NM, Costall B, Horovitz ZP, Ironside JW, Naylor RJ, et al. Angiotensin II inhibits acetylcholine release from human temporal cortex: implications for cognition. Brain Res. 1990;507(2):341–3.

    Article  CAS  PubMed  Google Scholar 

  77. Hemming ML, Selkoe DJ. Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005;280(45):37644–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37(2):289–305.

    Article  CAS  PubMed  Google Scholar 

  79. Carson JA, Turner AJ. Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem. 2002;81(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007;117(11):3393–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Mogi M, Li J-M, Tsukuda K, Iwanami J, Min L-J, Sakata A, et al. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008;375(3):446–9.

    Article  CAS  PubMed  Google Scholar 

  82. McCabe RD, Bakarich MA, Srivastava K, Young DB. Potassium inhibits free radical formation. Hypertension. 1994;24(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  83. Ishimitsu T, Tobian L, Sugimoto K, Everson T. High potassium diets reduce vascular and plasma lipid peroxides in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens NYN 1993. 1996;18(5):659–73.

    CAS  Google Scholar 

  84. Young DB, Ma G. Vascular protective effects of potassium. Semin Nephrol. 1999;19(5):477–86.

    CAS  PubMed  Google Scholar 

  85. Chen WT, Brace RA, Scott JB, Anderson DK, Haddy FJ. The mechanism of the vasodilator action of potassium. Proc Soc Exp Biol Med Soc Exp Biol Med NYN. 1972;140(3):820–4.

    Article  CAS  Google Scholar 

  86. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential form primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    Article  PubMed  Google Scholar 

  87. Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007;6(12):1106–14.

    Article  PubMed  Google Scholar 

  88. Schaller S, Mauskopf J, Kriza C, Wahlster P, Kolominsky-Rabas PL. The main cost drivers in dementia: a systematic review. Int J Geriatr Psychiatry. 2014. doi:10.1002/gps.4198.

Download references

Acknowledgments

No funding was received related to the preparation of this article. Laure Rouch, Philippe Cestac, Charlène Cool, Bernard Chamontin, and Bruno Vellas have no conflicts of interest to declare. Olivier Hanon reports receiving consulting fees or honorarium from Servier, Bayer, Sanofi, Boehringer-Ingelheim, Daiichi, Novartis, and Bristol-Myers Squibb. Catherine Helmer reports receiving fees from Schwabe Pharma. Béatrice Bouhanick has acted as a consultant for Lilly and Astra Zeneca for diabetic products. She has no conflict of interest with antihypertensive therapy. Jean-François Dartigues has received Grants from Ipsen and Novartis and consulting fees or honorarium from Ipsen, Novartis, and Newron. Sandrine Andrieu has a conflict of interest with the Ministry of Education. She has received Grants from Ipsen, Lilly, Lundbeck, and Nestlé. She has received consulting fees or honorarium and support for travel to meetings, manuscript preparation from Ipsen, Eisai, Pierre Fabre, Pfizer, Lilly, Janssen, Chiesi, Exonhit, Lundbeck, Nestlé, Novartis, Roche, Servier, and Sanofi. She has received fees for participating in review activities such as data monitoring boards from Enroll-HD and the CHDI Foundation and has received payments for lectures from Ipsen, Eisai, Pierre Fabre, Servier, Pfizer, Lundbeck, Nestlé, Novartis, Janssen, Chiesi, and Elan Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Rouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouch, L., Cestac, P., Hanon, O. et al. Antihypertensive Drugs, Prevention of Cognitive Decline and Dementia: A Systematic Review of Observational Studies, Randomized Controlled Trials and Meta-Analyses, with Discussion of Potential Mechanisms. CNS Drugs 29, 113–130 (2015). https://doi.org/10.1007/s40263-015-0230-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0230-6

Keywords

Navigation