Skip to main content
Log in

Drug Treatment of Primary Insomnia: A Meta-Analysis of Polysomnographic Randomized Controlled Trials

  • Systematic Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Context

Although insomnia is a frequent health complaint that is often treated with drugs, little is known about differences in treatment efficacy of various drug classes on objective versus subjective outcome measures.

Objective

Our aim was to compare treatment efficacy of classical benzodiazepines, benzodiazepine receptor agonists (zopiclone, zolpidem and zaleplon), antidepressants (including low-dose doxepin), neuropeptides, progesterone receptor antagonists, hormones, melatonin receptor agonists, antihistamines, antiepileptics, and narcotics addressing primary insomnia.

Data Sources

We conducted a comprehensive literature search (up to 5 April 2013) using PubMed, Cochrane Clinical Trials, PQDT OPEN, OpenGREY, ISI Web of Knowledge, PsycINFO, PSYNDEX, and the WHO International Clinical Trials Registry Platform.

Eligibility Criteria

Only polysomnographic, parallel-group, randomized controlled drug trials were included; eligibility was determined by two independent authors.

Data Synthesis

We used a random effects model, based on 31 studies reporting 80 treatment conditions, covering 3,820 participants.

Results

Effect size estimates for the total sample of pooled drug classes suggest that there is a small-to-moderate, significant, and robust effect for objective outcomes (sleep onset latency g = −0.36, total sleep time g = 0.27) and subjective outcomes (sleep onset latency g = −0.24, total sleep time g = 0.21). Results indicate higher effect sizes for benzodiazepine receptor agonists and classical benzodiazepines compared with antidepressants (including low-dose doxepin) and for classical benzodiazepines compared with benzodiazepine receptor agonists. Benzodiazepine receptor agonists demonstrated higher effect sizes for objective outcomes.

Limitations

Data on drug safety were not analyzed.

Conclusions

Future studies should use objective and subjective assessment. Focusing on efficacy, clinicians should favor benzodiazepine receptor agonists and classical benzodiazepines over antidepressants (including low-dose doxepin) for primary insomnia treatment, but the additional consideration of different side effect profiles can lead to alternative treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Morin CM, Savard J, Ouellet M-C. Nature and treatment of insomnia. USA: Wiley; 2013. p. 318–39.

    Google Scholar 

  2. Leger D, Poursain B, Neubauer D, Uchiyama M. An international survey of sleeping problems in the general population. Curr Med Res Opin. 2008;24(1):307–17.

    Article  CAS  PubMed  Google Scholar 

  3. Roth T, Coulouvrat C, Hajak G, Lakoma MD, Sampson NA, Shahly V, et al. Prevalence and perceived health associated with insomnia based on DSM-IV-TR; International Statistical Classification of Diseases and related health problems, Tenth Revision; and Research Diagnostic Criteria/International Classification of Sleep Disorders, Second Edition criteria: results from the America Insomnia Survey. Biol Psychiatry. 2011;69(6):592–600.

    Article  PubMed  Google Scholar 

  4. Buscemi N, Vandermeer B, Friesen C, Bialy L, Tubman M, Ospina M, et al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs. J Gen Intern Med. 2007;22(9):1335–50.

    Article  PubMed Central  PubMed  Google Scholar 

  5. McCrae CS, Lichstein KL. Secondary insomnia: diagnostic challenges and intervention opportunities. Sleep Med Rev. 2001;5(1):47–61. doi:10.1053/smrv.2000.0146.

    Article  PubMed  Google Scholar 

  6. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed., text rev. Washington: APA; 2000.

  8. Buysse DJ. Insomnia. JAMA. 2013;309(7):706–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Huedo-Medina TB, Kirsch I, Middlemass J, Klonizakis M, Siriwardena AN. Effectiveness of non-benzodiazepine hypnotics in treatment of adult insomnia: meta-analysis of data submitted to the Food and Drug Administration. BMJ. 2012;345:e8343.

  10. Glass J, Lanctot KL, Herrmann N, Sproule BA, Busto UE. Sedative hypnotics in older people with insomnia: meta-analysis of risks and benefits. BMJ. 2005;331(7526):1169–73. doi:10.1136/bmj.38623.768588.47.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dundar Y, Dodd S, Strobl J, Boland A, Dickson R, Walley T. Comparative efficacy of newer hypnotic drugs for the short-term management of insomnia: a systematic review and meta-analysis. Hum Psychopharmacol Clin Exp. 2004;19(5):305–22. doi:10.1002/hup.594.

    Article  Google Scholar 

  12. Smith MT, Perlis ML, Park A, Smith MS, Pennington J, Giles DE et al. Comparative meta-analysis of pharmacotherapy and behavior therapy for persistent insomnia. Am J Psychiatry. 2002;159(1):5–11.

  13. Holbrook AM, Crowther R, Lotter A, Cheng C, King D. Meta-analysis of benzodiazepine use in the treatment of insomnia. Can Med Assoc J. 2000;162(2):225–33.

    CAS  Google Scholar 

  14. Nowell PD, Mazumdar S, Buysse DJ, Dew MA, Reynolds CF 3rd, Kupfer DJ. Benzodiazepines and zolpidem for chronic insomnia: a meta-analysis of treatment efficacy. JAMA. 1997;278(24):2170–7.

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-San-Martin M, Masa-Font R, Palacios-Soler L, Sancho-Gomez P, Calbo-Caldentey C, Flores-Mateo G. Effectiveness of valerian on insomnia: a meta-analysis of randomized placebo-controlled trials. Sleep Med. 2010;11(6):505-11.

  16. Liu J, Wang LN. Ramelteon in the treatment of chronic insomnia: systematic review and meta-analysis. Int J Clin Pract. 2012;66(9):867–73. doi:10.1111/j.1742-1241.2012.02987.x.

    Article  CAS  PubMed  Google Scholar 

  17. Baldwin D. Short-term treatment with hypnotic drugs for insomnia: going beyond the evidence. J Psychopharmacol. 2005;19(2):134–5. doi:10.1177/0269881105051991.

    Article  PubMed  Google Scholar 

  18. JARS. Reporting standards for research in psychology: Why do we need them? What might they be? Am Psychol. 2008;63(9):839-51. doi:10.1037/0003-066X.63.9.839.

  19. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF, et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Lancet. 1999;354(9193):1896–900.

    Article  CAS  PubMed  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12. doi:10.1016/j.jclinepi.2009.06.005.

    Article  PubMed  Google Scholar 

  21. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  22. Cook DJ, Sackett DL, Spitzer WO. Methodologic guidelines for systematic reviews of randomized control trials in health care from the potsdam consultation on meta-analysis. J Clin Epidemiol. 1995;48(1):167–71.

    Article  CAS  PubMed  Google Scholar 

  23. Morin CM. Measuring outcomes in randomized clinical trials of insomnia treatments. Sleep Med Rev. 2003;7(3):263–79. doi:10.1053/smrv.2002.0274.

    Article  PubMed  Google Scholar 

  24. Baglioni C, Regen W, Teghen A, Spiegelhalder K, Feige B, Nissen C, et al. Sleep changes in the disorder of insomnia: a meta-analysis of polysomnographic studies. Sleep Med Rev. 2014;18(3):195–213. doi:10.1016/j.smrv.2013.04.001.

    Article  PubMed  Google Scholar 

  25. Glass G. Primary, secondary and meta-analysis of research. Health Educ Res. 1976;5:3–8.

    Google Scholar 

  26. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  27. Borenstein M, Hedges L, Higgins J, Rothstein H. Comperhensive meta-analysis, version 2. 2nd ed. Engelwood: Biostat Inc.; 2005.

    Google Scholar 

  28. Hedges LV, Olkin I. Nonparametric estimators of effect size in meta-analysis. Psychol Bull. 1984;96(3):573–80. doi:10.1037/0033-2909.96.3.573.

    Article  Google Scholar 

  29. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates Inc; 1988.

    Google Scholar 

  30. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009.

    Book  Google Scholar 

  32. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63. doi:10.1111/j.0006-341X.2000.00455.x.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenthal R. Meta-analytic procedures for social research. Newbury Park: Sage Publications; 1993.

    Google Scholar 

  34. Johnson BT, Eagly AH. Quantitative synthesis of social psychological research. In: Reis HT, Judd CM, editors. Handbook of research methods in social and personality psychology. London: Cambridge University Press; 2000. p. 496–528.

    Google Scholar 

  35. Rief W, Nestoriuc Y, Weiss S, Welzel E, Barsky AJ, Hofmann SG. Meta-analysis of the placebo response in antidepressant trials. J Affect Disord. 2009;118(1–3):1–8. doi:10.1016/j.jad.2009.01.029.

    Article  CAS  PubMed  Google Scholar 

  36. Walsh BT, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression—variable, substantial, and growing. JAMA. 2002;287(14):1840–7. doi:10.1001/jama.287.14.1840.

    Article  PubMed  Google Scholar 

  37. Xu ZQ, Jiang XJ, Li W, Gao D, Li XJ, Liu J. Propofol-induced sleep: efficacy and safety in patients with refractory chronic primary insomnia. Cell Biochem Biophys. 2011;60(3):161–6. doi:10.1007/s12013-010-9135-7.

    Article  CAS  PubMed  Google Scholar 

  38. Mayer G, Wang-Weigand S, Roth-Schechter B, Lehmann R, Staner C, Partinen M. Efficacy and safety of 6-month nightly ramelteon administration in adults with chronic primary insomnia. Sleep. 2009;32(3):351–60.

    PubMed Central  PubMed  Google Scholar 

  39. Randall S, Roehrs TA, Roth T. Efficacy of eight months of nightly zolpidem: a prospective placebo-controlled study. Sleep. 2012;35(11):1551–7. doi:10.5665/sleep.2208.

    PubMed Central  PubMed  Google Scholar 

  40. Riemann D, Nissen C. Substanzinduzierte Schlafstörungen und Schlafmittelmissbrauch. Bundesgesundheitsbl. 2011;54(12):1325–31. doi:10.1007/s00103-011-1374-2.

    Article  CAS  Google Scholar 

  41. Weinling E, McDougall S, Andre F, Bianchetti G, Dubruc C. Pharmacokinetic profile of a new modified release formulation of zolpidem designed to improve sleep maintenance. Fundam Clin Pharmacol. 2006;20(4):397–403. doi:10.1111/j.1472-8206.2006.00415.x.

    Article  CAS  PubMed  Google Scholar 

  42. Morin AK, Willett K. The role of eszopiclone in the treatment of insomnia. Adv Ther. 2009;26(5):500–18. doi:10.1007/s12325-009-0026-5.

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell M, Gehrman P, Perlis M, Umscheid C. Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. BMC Fam Pract. 2012;13(1):40.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sivertsen B, Omvik S, Pallesen S, Bjorvatn B, Havik OE, Kvale G, et al. Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a randomized controlled trial. JAMA. 2006;295(24):2851–8. doi:10.1001/jama.295.24.2851.

    Article  PubMed  Google Scholar 

  45. Jacobs GD, Pace-Schott EF, Stickgold R, Otto MW. Cognitive behavior therapy and pharmacotherapy for insomnia: a randomized controlled trial and direct comparison. Arch Intern Med. 2004;164(17):1888–96. doi:10.1001/archinte.164.17.1888.

    Article  PubMed  Google Scholar 

  46. Morin CM, Colecchi C, Stone J, Sood R, Brink D. Behavioral and pharmacological therapies for late-life insomnia: a randomized controlled trial. JAMA. 1999;281(11):991–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wu RG, Bao JF, Zhang CA, Deng J, Long CL. Comparison of sleep condition and sleep-related psychological activity after cognitive-behavior and pharmacological therapy for chronic insomnia. Psychother Psychosom. 2006;75(4):220–8. doi:10.1159/000092892.

    Article  PubMed  Google Scholar 

  48. McClusky H, Milby J, Switzer P, Williams V, Wooten V. Efficacy of behavioral versus triazolam treatment in persistent sleep-onset insomnia. Am J Psychiatry. 1991;148:121–6.

    CAS  PubMed  Google Scholar 

  49. Bes F, Hofman W, Schuur J, Van Boxtel C. Effects of delta sleep-inducing peptide on sleep of chronic insomniac patients. A double-blind study. Neuropsychobiology. 1992;26(4):193–7. doi:118919.

    Article  CAS  PubMed  Google Scholar 

  50. Buckley T, Duggal V, Schatzberg AF. The acute and post-discontinuation effects of a glucocorticoid receptor (GR) antagonist probe on sleep and the HPA axis in chronic insomnia: a pilot study. J Clin Sleep Med. 2008;4(3):235–41.

    PubMed Central  PubMed  Google Scholar 

  51. Fleming J, Moldofsky H, Walsh JK, Scharf M, Nino MG, Radonjic D. Comparison of the residual effects and efficacy of short term zolpidem, flurazepam and placebo in patients with chronic insomnia. Clin Drug Investig. 1995;9(6):303-313.

  52. Hajak G, Rodenbeck A, Voderholzer U, Riemann D, Cohrs S, Hohagen F, et al. Doxepin in the treatment of primary insomnia: a placebo-controlled, double-blind, polysomnographic study. J Clin Psychiatry. 2001;62(6):453–63. doi:10.4088/JCP.v62n0609.

    Article  CAS  PubMed  Google Scholar 

  53. Herrmann WM, Kubicki ST, Boden S, Eich FX, Attali P, Coquelin JP. Pilot controlled double-blind study of the hypnotic effects of zolpidem in patients with chronic ‘learned’ insomnia: psychometric and polysomnographic evaluation. J Int Med Res. 1993;21(6):306–22.

    CAS  PubMed  Google Scholar 

  54. Krystal AD, Durrence HH, Scharf M, Jochelson P, Rogowski R, Ludington E, et al. Efficacy and safety of doxepin 1 mg and 3 mg in a 12-week sleep laboratory and outpatient trial of elderly subjects with chronic primary insomnia. Sleep. 2010;33(11):1553–61.

    PubMed Central  PubMed  Google Scholar 

  55. Krystal AD, Lankford A, Durrence HH, Ludington E, Jochelson P, Rogowski R, et al. Efficacy and safety of doxepin 3 and 6 mg in a 35-day sleep laboratory trial in adults with chronic primary insomnia. Sleep. 2011;34(10):1433–42. doi:10.5665/sleep.1294.

    PubMed Central  PubMed  Google Scholar 

  56. Luthringer R, Muzet M, Zisapel N, Staner L. The effect of prolonged-release melatonin on sleep measures and psychomotor performance in elderly patients with insomnia. Int Clin Psychopharmacol. 2009;24(5):239–49. doi:10.1097/YIC.0b013e32832e9b08.

    Article  PubMed  Google Scholar 

  57. McCall WV, Erman M, Krystal AD, Rosenberg R, Scharf M, Zammit GK, et al. A polysomnography study of eszopiclone in elderly patients with insomnia. Curr Med Res Opin. 2006;22(9):1633–42. doi:10.1185/030079906x112741.

    Article  CAS  PubMed  Google Scholar 

  58. Monti JM, Alvarino F, Monti D. Conventional and power spectrum analysis of the effects of zolpidem on sleep EEG in patients with chronic primary insomnia. Sleep. 2000;23(8):1075–84.

    CAS  PubMed  Google Scholar 

  59. Monti JM, Attali P, Monti D, Zipfel A, de la Giclais B, Morselli PL. Zolpidem and rebound insomnia—a double-blind, controlled polysomnographic study in chronic insomniac patients. Pharmacopsychiatry. 1994;27(4):166–75. doi:10.1055/s-2007-1014298.

    Article  CAS  PubMed  Google Scholar 

  60. Monti JM, Monti D, Estevez F, Giusti M. Sleep in patients with chronic primary insomnia during long-term zolpidem administration and after its withdrawal. Int Clin Psychopharmacol. 1996;11(4):255–63. doi:10.1097/00004850-199612000-00007.

    Article  CAS  PubMed  Google Scholar 

  61. Morin CM, Koetter U, Bastien C, Ware JC, Wooten V. Valerian-hops combination and diphenhydramine for treating insomnia: a randomized placebo-controlled clinical trial. Sleep. 2005;28(11):1465–71.

    PubMed  Google Scholar 

  62. Riemann D, Voderholzer U, Cohrs S, Rodenbeck A, Hajak G, Ruether E, et al. Trimipramine in primary insomnia: results of a polysomnographic double-blind controlled study. Trimipramin bei primaerer Insomnie: ergebnisse einer polysomnographischen kontrollierten Doppel-Blind-Studie. Pharmacopsychiatry. 2002;35:165–74.

    Article  CAS  PubMed  Google Scholar 

  63. Roth T, Soubrane C, Titeux L, Walsh JK. Efficacy and safety of zolpidem-MR: a double-blind, placebo-controlled study in adults with primary insomnia. Sleep Med. 2006;7(5):397–406. doi:10.1016/j.sleep.2006.04.008.

    Article  PubMed  Google Scholar 

  64. Roth T, Wright KP, Walsh J. Effect of tiagabine on sleep in elderly subjects with primary insomnia: a randomized, double-blind, placebo-controlled study. Sleep. 2006;29(3):335–41.

    PubMed  Google Scholar 

  65. Roth TG, Roehrs TA, Koshorek GL, Greenblatt DJ, Rosenthal LD. Hypnotic effects of low doses of quazepam in older insomniacs. J Clin Psychopharmacol. 1997.

  66. Scharf MB, Roth T, Vogel GW, Walsh JK. A multicenter, placebo-controlled study evaluating zolpidem in the treatment of chronic insomnia. J Clin Psychiatry. 1994;55(5):192–9.

    CAS  PubMed  Google Scholar 

  67. Schulz H, Stolz C, Muller J. The effect of valerian extract on sleep polygraphy in poor sleepers—a pilot-study. Pharmacopsychiatry. 1994;27(4):147–51. doi:10.1055/s-2007-1014295.

    Article  CAS  PubMed  Google Scholar 

  68. Walsh JK, Perlis M, Rosenthal M, Krystal A, Jiang J, Roth T. Tiagabine increases slow-wave sleep in a dose-dependent fashion without affecting traditional efficacy measures in adults with primary insomnia. J Clin Sleep Med. 2006;2(1):35–41.

    PubMed  Google Scholar 

  69. Walsh JK, Soubrane C, Roth T. Efficacy and safety of zolpidem extended release in elderly primary insomnia patients. Am J Geriatr Psychiatry. 2008;16(1):44–57. doi:10.1097/JGP.0b013e3181256b01.

    Article  PubMed  Google Scholar 

  70. Walsh JK, Vogel GW, Scharf M, Erman M, Erwin CW, Schweitzer PK, et al. A five week, polysomnographic assessment of zaleplon 10 mg for the treatment of primary insomnia. Sleep Med. 2000;1(1):41–9. doi:10.1016/s1389-9457(99)00006-4.

    Article  PubMed  Google Scholar 

  71. Ware J, Walsh JK, Scharf MB, Roehrs T, Roth T, Vogel GW. Minimal rebound insomnia after treatment with 10-mg zolpidem. Clin Neuropharmacol. 1997;20(2):116–25. doi:10.1097/00002826-199704000-00002.

    Article  CAS  PubMed  Google Scholar 

  72. Zammit G, Erman M, Wang-Weigand S, Sainati S, Zhang J, Roth T. Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J Clin Sleep Med. 2007;3(5):495–504.

    PubMed Central  PubMed  Google Scholar 

  73. Zammit GK, McNabb LJ, Caron J, Amato DA, Roth T. Efficacy and safety of eszopiclone across 6-weeks of treatment for primary insomnia. Curr Med Res Opin. 2004;. doi:10.1185/174234304X15174.

    PubMed  Google Scholar 

  74. Enck P, Bingel U, Schedlowski M, Rief W. The placebo response in medicine: minimize, maximize or personalize? Nat Rev Drug Discov. 2013;12(3):191–204. doi:10.1038/nrd3923.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Funding

The study was prepared in the context of the FOR 1328 research unit on placebo and nocebo mechanisms and was supported by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). A Winkler, C Auer, BK Doering, and W Rief have no conflicts of interest including any financial, personal, or other relationships with other people or organizations to declare that could inappropriately influence, or be perceived to influence, the present work. This study did not require ethics approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Winkler.

Appendix

Appendix

1.1 Detailed Information on Quantitative Data Synthesis and Moderator Analyses

Since comparative effectiveness research (CER) trials result in a higher clinical efficacy of the drug compared with conventional placebo-controlled trials [74], we decided a priori to restrict the searches to placebo-controlled trials.

The intergroup effect sizes were computed using the following formula: \( d = \frac{{\bar{X}_{1} - \bar{X}_{2} }}{{\sqrt {\frac{{\left( {n_{1} - 1} \right) S_{1}^{2} + \left( {n_{2} - 1} \right) S_{2}^{2} }}{{n_{1} + n_{2} - 2}}} }} \), where \( \bar{X}_{1} \) and \( \bar{X}_{2} \) are the sample means, \( S_{1} \) and \( S_{2} \) are the SDs, and \( n_{1} \) and \( n_{2} \) are the sample sizes in the intervention condition and the control condition, respectively.

For studies reporting mean change, SD difference, and N in each group, the intergroup effect size was calculated using the following formula: \( d = \frac{{\bar{X}_{1} - \bar{X}_{2} }}{{\sqrt {\frac{{\left( {n_{1} - 1} \right) S_{1}^{2} + \left( {n_{2} - 1} \right) S_{2}^{2} }}{{n_{1} + n_{2} - 2}}} }} \), where \( \bar{X}_{1} \) and \( \bar{X}_{2} \) are the sample mean changes, \( n_{1} \) and \( n_{2} \) are the sample sizes in the intervention condition and the control condition, respectively, and \( S_{1} \) and \( S_{2} \) are the SDs determined by the following formula: \( S_{x} = \frac{{{\text{SD change}}_{x} }}{{\sqrt {2 (1 - r)} }} \), where SD change x is the given SD change and r is the pre-post correlation. To calculate controlled effect sizes, the correlation between pre- and post-treatment measures is called for; however, it could not be determined from the study reports. As recommended by Rosenthal [33], we used a conservative estimate of r = 0.70 instead.

Hedges’ g can be computed by multiplying d by a correction factor \( J = 1 - \frac{3}{4df - 1} \), where df is the degrees of freedom to estimate the intra-group SD.

Q is determined by the following formula: \( Q = \sum\nolimits_{i = 1}^{k} {W_{i} Y_{i}^{2} } - \frac{{\left( {\sum\nolimits_{i = 1}^{k} {W_{i} Y_{i} } } \right)}}{{\sum\nolimits_{i = 1}^{k} {W_{i} } }} \), with W i being the weight of the study, Y i the effect size of the study, and k the number of studies included. To determine the expected value of Q, we used the degrees of freedom (\( df = k - 1 \), with k being the number of studies included). A significant Q test (p value less than alpha set at 0.05) indicates heterogeneity in effect sizes.

I 2 is determined by using the following formula: \( I^{2} = \left( {\frac{Q - df}{Q}} \right) \times 100\;\% \). I 2 is expressed as a ratio, with a range of 0–100 %, and describes what proportion of the observed variance reflects real differences in effect sizes. Higgins et al. [30] suggest that values of 25, 50, and 75 % can be considered as low, moderate, and high, respectively.

We computed the fail-safe N using the following formula: \( X = \frac{{K(K\bar{Z}^{2} - 2.706)}}{2.706} \), where K is the number of studies in the meta-analysis and \( \bar{Z} \) is the mean Z obtained from the K studies. The effect size can be characterized as robust if the number of studies (X) required to reduce the overall effect size to a non-significant level exceeds 5K + 10 [33].

We used the Trim and Fill method, which examines whether negative or positive trials are over- or under-represented, depending on the sample size. This information can then be used to re-calculate the effect size estimates, if the funnel plot is asymmetric. The divergence of the original effect size and the re-calculated effect size shows the degree of robustness of the results.

Instead of conducting a power analysis, we report the observed effect size with its CI, which is more informative than the statement that power was low [31]. We also did not report Ms and SDs for measurement artifacts because construct-level relationships were not the focus of this analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, A., Auer, C., Doering, B.K. et al. Drug Treatment of Primary Insomnia: A Meta-Analysis of Polysomnographic Randomized Controlled Trials. CNS Drugs 28, 799–816 (2014). https://doi.org/10.1007/s40263-014-0198-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0198-7

Keywords

Navigation