Skip to main content
Log in

Practical Guidelines for Therapeutic Drug Monitoring of Anticancer Tyrosine Kinase Inhibitors: Focus on the Pharmacokinetic Targets

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

There is accumulating evidence for potential benefits of therapeutic drug monitoring (TDM) in the treatment of cancer with tyrosine kinase inhibitors (TKIs). Relationships between exposure and response (efficacy/toxicity) have been established for several TKIs. For example, the pharmacokinetic targets for efficacy of imatinib, sunitinib and pazopanib have been defined as trough plasma concentrations (C trough) of >1,000, >50 and >20,000 ng/mL for selected indications, respectively. Dose adjustment based on pharmacokinetic targets could therefore increase response rates and duration. Furthermore, with appropriate target concentrations defined, excessive side effects in patients using the current fixed dosing strategy may be prevented. This review provides a practical guideline for TDM for the currently approved TKIs at 28 February 2013. The focus of this article is on the elaboration of exposure and response relationships of TKIs with proposed pharmacokinetic targets, mainly C trough, and further on the interpretation of the pharmacokinetic targets with recommendations for dose titrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kappelhoff BS, Crommentuyn KML, de Maat MMR, et al. Practical guidelines to interpret plasma concentrations of antiretroviral drugs. Clin Pharmacokinet. 2004;43(13):845–53.

    PubMed  CAS  Google Scholar 

  2. De Jonge ME, Huitema ADR, Schellens JHM, et al. Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet. 2005;44(2):147–73.

    PubMed  Google Scholar 

  3. Decosterd L, Dahmane E, Neeman M, et al. Therapeutic drug monitoring of targeted anticancer therapy. Tyrosine kinase inhibitors and selective estrogen receptor modulators: a clinical pharmacology laboratory perspective. In: Xu QA, Madden TL, editors. LC–MS in drug bioanalysis. Boston: Springer; 2012. p. 197–250.

    Google Scholar 

  4. Gao B, Yeap S, Clements A, et al. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol. 2012;30(32):4017–25.

    PubMed  CAS  Google Scholar 

  5. McMahon G, O’Connor R. Therapeutic drug monitoring in oncology: does it have a future? Bioanalysis. 2009;1(3):507–11.

    PubMed  CAS  Google Scholar 

  6. Beumer JH. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther. 2013;93(3):228–30.

    PubMed  CAS  Google Scholar 

  7. Paul MK, Mukhopadhyay AK. Tyrosine kinase—role and significance in cancer. Int J Med Sci. 2004;1(2):101–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. European Medicines Agency (EMA). European Public Assessment Reports. http://www.ema.europa.eu/ema. Accessed 8 Jan 2014.

  9. US Food and Drug Administration. http://www.fda.gov. Accessed 8 Jan 2014.

  10. Klümpen H-J, Samer CF, Mathijssen RHJ, et al. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev. 2011;37(4):251–60.

    PubMed  Google Scholar 

  11. Van Erp NP, Gelderblom H, Guchelaar H-J. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35(8):692–706.

    PubMed  Google Scholar 

  12. Lankheet NAG, Knapen LM, Schellens JHM, et al. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit. Epub 2013 Dec 3.

  13. Josephs DH, Fisher DS, Spicer J, et al. Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit. 2013;35(5):562–87.

    PubMed  CAS  Google Scholar 

  14. Chen Y, Tortorici MA, Garrett M, et al. Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013;52(9):713–25.

    PubMed  CAS  Google Scholar 

  15. Rini BI, de La Motte Rouge T, Harzstark AL, et al. Five-year survival in patients with cytokine-refractory metastatic renal cell carcinoma treated with axitinib. Clin Genitourin Cancer. 2013;11(2):107–14.

    PubMed  Google Scholar 

  16. Rixe O, Dutcher J, Motzer R, et al. Diastolic blood pressure (dBP) and pharmacokinetics (PK) as predictors of axitinib efficacy in metastatic renal cell cancer (mRCC) [abstract no. 5045]. J Clin Oncol. 2009;27:15S.

    Google Scholar 

  17. Rini BI, Garrett M, Poland B, et al. Axitinib in metastatic renal cell carcinoma: results of a pharmacokinetic and pharmacodynamic analysis. J Clin Pharmacol. 2013;53(5):491–504.

    PubMed  Google Scholar 

  18. Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17(11):3841–9.

    PubMed  CAS  Google Scholar 

  19. Rini BI, Gruenwald V, Fishman MN, et al. Axitinib with or without dose titration for first-line metastatic renal cell carcinoma (mRCC): unblinded results from a randomized phase II study [abstract no. LBA349]. J Clin Oncol. 2013;31(suppl 6).

  20. Rini BI, Melichar B, Ueda T, et al. Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol. 2013;14(12):1233–42.

    PubMed  CAS  Google Scholar 

  21. Wood LS, Gornell S, Rini BI. Maximizing clinical outcomes with axitinib therapy in advanced renal cell carcinoma through proactive side-effect management. Community Oncol. 2012;9(2):46–55.

    Google Scholar 

  22. Tan W, Wilner KD, Bang Y, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients [abstract no. 2596]. J Clin Oncol. 2010;28(15 suppl).

  23. Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007;6(12 Pt 1):3314–22.

    PubMed  CAS  Google Scholar 

  24. Costa DB, Kobayashi S. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):2011–3.

    Google Scholar 

  25. Yamazaki S, Vicini P, Shen Z, et al. Pharmacokinetic/pharmacodynamic modeling of crizotinib for anaplastic lymphoma kinase inhibition and antitumor efficacy in human tumor xenograft mouse models. J Pharmacol Exp Ther. 2012;340(3):549–57.

    PubMed  CAS  Google Scholar 

  26. Yamazaki S. Translational pharmacokinetic–pharmacodynamic modeling from nonclinical to clinical development: a case study of anticancer drug, crizotinib. AAPS J. 2013;15(2):354–66.

    PubMed Central  PubMed  Google Scholar 

  27. O’Bryant CL, Wenger SD, Kim M, et al. Crizotinib: a new treatment option for ALK-positive non-small cell lung cancer. Ann Pharmacother. 2013;47(2):189–97.

    PubMed  Google Scholar 

  28. Bang Y, Kwak E, Shaw A, et al. Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC) [abstract no. 3]. J Clin Oncol. 2010;28(18 suppl).

  29. Abraham J. Activity of crizotinib in patients with non-small cell lung cancer. Commun Oncol. 2010;7(10):443–4.

    Google Scholar 

  30. Kwak EL, Bang YJ, Camidge R, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Bouchet S, Chauzit E, Ducint D, et al. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS–MS. Clin Chim Acta. 2011;412(11–12):1060–7.

    PubMed  CAS  Google Scholar 

  32. Wang X, Roy A, Hochhaus A, et al. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure–response analysis of a phase III study. Clin Pharmacol Adv Appl. 2013;5:85–97.

    CAS  Google Scholar 

  33. Pirro E, De Francia S, De Martino F, et al. A new HPLC-UV validated method for therapeutic drug monitoring of tyrosine kinase inhibitors in leukemic patients. J Chromatogr Sci. 2011;49(10):753–7.

    PubMed  CAS  Google Scholar 

  34. Deng Q, Mitsiades N, Negri J, et al. Dasatinib (BMS-354825): a multitargeted kinase inhibitor with activity against multiple myeloma. Blood (ASH Annual Meeting Abstracts). 2005;106:Abstract 1571.

    Google Scholar 

  35. Shah NP, Nicoll JM, Bleickardt E, et al. Potent transient inhibition of BCR-ABL by dasatinib leads to complete cytogenetic remissions in patients with chronic myeloid leukemia: implications for patient management and drug development. Blood (ASH Annual Meeting Abstracts). 2006;108:Abstract 2166.

    Google Scholar 

  36. Luo FR, Yang Z, Camuso A, et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res. 2006;12(23):7180–6.

    PubMed  CAS  Google Scholar 

  37. Brave M, Goodman V, Kaminskas E, et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res. 2008;14(2):352–9.

    PubMed  CAS  Google Scholar 

  38. Wang X, Hochhaus A, Kantarjian HM, et al. Dasatinib pharmacokinetics and exposure–response (E-R): Relationship to safety and efficacy in patients (pts) with chronic myeloid leukemia (CML) [abstract no. 3590]. J Clin Oncol. 2008;26(15 suppl).

  39. Rousselot P, Mollica L, Etienne G, et al. Pharmacologic monitoring of dasatinib as first line therapy in newly diagnosed chronic phase chronic myelogenous leukemia (CP-CML) identifies patients at higher risk of pleural effusion: a sub-analysis of the OPTIM-Dasatinib Trial. Blood (ASH Annual Meeting Abstracts). 2012;120:Abstract 3770.

    Google Scholar 

  40. Mita AC, Papadopoulos K, de Jonge MJA, et al. Erlotinib “dosing-to-rash”: a phase II intrapatient dose escalation and pharmacologic study of erlotinib in previously treated advanced non-small cell lung cancer. Br J Cancer. 2011;105(7):938–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Pérez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004;22(16):3238–47.

    PubMed  Google Scholar 

  42. Thomas F, Rochaix P, White-Koning M, et al. Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. Eur J Cancer. 2009;45(13):2316–23.

    PubMed  CAS  Google Scholar 

  43. Calvo E, Malik SN, Siu LL, et al. Assessment of erlotinib pharmacodynamics in tumors and skin of patients with head and neck cancer. Ann Oncol. 2007;18(4):761–7.

    PubMed  CAS  Google Scholar 

  44. Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85.

    PubMed  CAS  Google Scholar 

  45. Yeo W, Riely GJ, Yeap BY, et al. Erlotinib at a dose of 25 mg daily for non-small-cell lung cancers with EGFR mutations. J Thorac Oncol. 2010;5(7):1048–53.

    PubMed Central  PubMed  Google Scholar 

  46. Erlotinib EMA scientific discussion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000618/WC500033991.pdf. Accessed 20 Mar 2013.

  47. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 1997;57(21):4838–48.

    PubMed  CAS  Google Scholar 

  48. Pollack VA, Savage DM, Baker DA, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther. 1999;291(2):739–48.

    PubMed  CAS  Google Scholar 

  49. Hidalgo M, Siu LL, Nemunaitis J. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol. 2001;19(13):3267–79.

    PubMed  CAS  Google Scholar 

  50. Elsayed YA, Sausville EA. Selected novel anticancer treatments targeting cell signaling proteins. Oncologist. 2001;6(6):517–37.

    PubMed  CAS  Google Scholar 

  51. Zhang W, Siu LL, Moore MJ, et al. Simultaneous determination of OSI-774 and its major metabolite OSI-420 in human plasma by using HPLC with UV detection. J Chromatogr B. 2005;814(1):143–7.

    CAS  Google Scholar 

  52. Siu LL, Soulieres D, Chen EX, et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study. J Clin Oncol. 2007;25(16):2178–83.

    PubMed  CAS  Google Scholar 

  53. Chiorean EG, Porter JM, Foster AE, et al. A phase I and pharmacokinetic trial of erlotinib in combination with weekly docetaxel in patients with taxane-naive malignancies. Clin Cancer Res. 2008;14(4):1131–7.

    PubMed  CAS  Google Scholar 

  54. Cohen EEW, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2003;21(10):1980–7.

    PubMed  CAS  Google Scholar 

  55. Perez-Soler R, van Cutsem E. Clinical research of EGFR inhibitors and related dermatological toxicities. Oncology (Williston Park). 2007;21(11 suppl 5):10–6.

    Google Scholar 

  56. Tiseo M, Andreoli R, Gelsomino F, et al. Correlation between erlotinib pharmacokinetics, cutaneous toxicity and clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2014;83:265–71.

    PubMed  Google Scholar 

  57. Lu J-F, Eppler SM, Wolf J, et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure–safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther. 2006;80(2):136–45.

    PubMed  CAS  Google Scholar 

  58. Zhao Y-Y, Li S, Zhang Y, et al. The relationship between drug exposure and clinical outcomes of non-small cell lung cancer patients treated with gefitinib. Med Oncol. 2011;28(3):697–702.

    PubMed  CAS  Google Scholar 

  59. Nakamura Y, Sano K, Soda H. Pharmacokinetics of gefitinib predicts antitumor activity for advanced non-small cell lung cancer. J Thorac Oncol. 2010;5(9):1404–9.

    PubMed  Google Scholar 

  60. Mohamed MK, Ramalingam S, Lin Y, et al. Skin rash and good performance status predict improved survival with gefitinib in patients with advanced non-small cell lung cancer. Ann Oncol. 2005;16(5):780–5.

    PubMed  CAS  Google Scholar 

  61. West HL, Franklin WA, McCoy J, et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group Study S0126. J Clin Oncol. 2006;24(12):1807–13.

    PubMed  CAS  Google Scholar 

  62. Sugiura Y, Nemoto E, Kawai O, et al. Skin rash by gefitinib is a sign of favorable outcomes for patients of advanced lung adenocarcinoma in Japanese patients. Springerplus. 2013;2(1):22.

    PubMed Central  PubMed  Google Scholar 

  63. Petrelli F, Borgonovo K, Cabiddu M, et al. Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: a literature-based meta-analysis of 24 trials. Lung Cancer. 2012;78(1):8–15.

    PubMed  Google Scholar 

  64. Perez CA, Song H, Raez LE, et al. Phase II study of gefitinib adaptive dose escalation to skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 2012;48(9):887–92.

    PubMed  CAS  Google Scholar 

  65. Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007;109(8):3496–9.

    PubMed  CAS  Google Scholar 

  66. Larson RA, Druker BJ, Guilhot F, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8.

    PubMed  CAS  Google Scholar 

  67. Takahashi N, Wakita H, Miura M, et al. Correlation between imatinib pharmacokinetics and clinical response in Japanese patients with chronic-phase chronic myeloid leukemia. Clin Pharmacol Ther. 2010;88(6):809–13.

    PubMed  CAS  Google Scholar 

  68. Koren-Michowitz M, Volchek Y, Naparstek E, et al. Imatinib plasma trough levels in chronic myeloid leukaemia: results of a multicentre study CSTI571AIL11TGLIVEC. Hematol Oncol. 2012;30(4):200–5.

    PubMed  CAS  Google Scholar 

  69. Marin D, Bazeos A, Mahon F-X, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8.

    PubMed  CAS  Google Scholar 

  70. Li-Wan-Po A, Farndon P, Craddock C, et al. Integrating pharmacogenetics and therapeutic drug monitoring: optimal dosing of imatinib as a case-example. Eur J Clin Pharmacol. 2010;66(4):369–74.

    PubMed  CAS  Google Scholar 

  71. Singh N, Kumar L, Meena R, et al. Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol. 2009;65(6):545–9.

    PubMed  CAS  Google Scholar 

  72. Awidi A, Ayed AO, Bsoul N, et al. Relationship of serum imatinib trough level and response in CML patients: long term follow-up. Leuk Res. 2010;34(12):1573–5.

    PubMed  CAS  Google Scholar 

  73. Demetri GD, Wang Y, Wehrle E, et al. Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol. 2009;27(19):3141–7.

    PubMed  CAS  Google Scholar 

  74. Widmer N, Decosterd L, Csajka C, et al. Imatinib plasma levels: correlation with clinical benefit in GIST patients. Br J Cancer. 2010;102(7):1198–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Haouala A, Widmer N, Guidi M, et al. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br J Clin Pharmacol. 2013;75(4):1007–18.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Chatelut E, Gandia P, Gotta V, et al. Long-term prospective population PK study in GIST patients [letter]. Clin Cancer Res. 2013;19(4):949.

    PubMed  Google Scholar 

  77. Eechoute K, Fransson MN, Reyners AK, et al. A long-term prospective population pharmacokinetic study on imatinib plasma concentrations in GIST patients. Clin Cancer Res. 2012;18(20):5780–7.

    PubMed  CAS  Google Scholar 

  78. Delbaldo C, Chatelut E, Ré M, et al. Pharmacokinetic–pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res. 2006;12(20 Pt 1):6073–8.

    PubMed  CAS  Google Scholar 

  79. Baccarani M, Druker B, Cortes-Franco J, et al. 24 Months update of the TOPS study: a phase III, randomized, open-label study of 400 mg/d (SD-IM) versus 800 mg/d (HD-IM) of imatinib mesylate (IM) in patients (Pts) with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase (CML-CP). Blood (ASH Annual Meeting Abstracts). 2009;114:Abstract 337.

    Google Scholar 

  80. Teng JFT, Mabasa VH, Ensom MHH. The role of therapeutic drug monitoring of imatinib in patients with chronic myeloid leukemia and metastatic or unresectable gastrointestinal stromal tumors. Ther Drug Monit. 2012;34(1):85–97.

    PubMed  CAS  Google Scholar 

  81. Blasdel C, Egorin MJ, Lagattuta TF, et al. Therapeutic drug monitoring in CML patients on imatinib [letter]. Blood. 2007;110(5):1699–701 (author reply 1701).

    Google Scholar 

  82. I-COME: Imatinib Concentration Monitoring Evaluation: the clinical usefulness of “routine” versus “rescue” therapeutic drug monitoring (TDM) interventions in chronic myeloid leukaemia (CML) patients. http://www.controlled-trials.com/ISRCTN31181395. Accessed 21 Mar 2013.

  83. OPTIM IMATINIB: essai de phase 2, randomisé, évaluant le monitoring des taux plasmatiques résiduels d’imatinib mésylate (Glivec®), chez des patients ayant une leucémie myéloïde chronique en phase chronique nouvellement diagnostiquée. http://www.e-cancer.fr/recherche/recherche-clinique/registre-des-essais-cliniques/registre-des-essais-cliniques/details-etude?idFiche=1688. Accessed 21 Mar 2013.

  84. Burris HA III, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23(23):5305–13.

    PubMed  CAS  Google Scholar 

  85. Burris HA III, Taylor CW, Jones SF, et al. A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clin Cancer Res. 2009;15(21):6702–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Takahashi N, Miura M, Kuroki J, et al. Multicenter phase II clinical trial of nilotinib for patients with imatinib-resistant or intolerant CML from the East Japan CML Study Group (EJCML) trial: evaluation of molecular responses by the BCR-ABL1 mutational status and plasma trough concentration. Blood (ASH Annual Meeting Abstracts). 2012;120:Abstract 1360.

    Google Scholar 

  87. Larson RA, Yin OQP, Hochhaus A, et al. Population pharmacokinetic and exposure–response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol. 2012;68(5):723–33.

    PubMed  CAS  Google Scholar 

  88. Giles FJ, Yin OQP, Sallas WM, et al. Nilotinib population pharmacokinetics and exposure–response analysis in patients with imatinib-resistant or -intolerant chronic myeloid leukemia. Eur J Clin Pharmacol. 2013;69(4):813–23.

    PubMed  Google Scholar 

  89. Kumar R, Knick VB, Rudolph SK, et al. Pharmacokinetic–pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.

    PubMed  CAS  Google Scholar 

  90. Hurwitz HI, Dowlati A, Saini S, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.

    PubMed  CAS  Google Scholar 

  91. Yau T, Chen P-J, Chan P, et al. Phase I dose-finding study of pazopanib in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics, and pharmacodynamics. Clin Cancer Res. 2011;17(21):6914–23.

    PubMed  CAS  Google Scholar 

  92. Suttle B, Ball HA, Molimard M, et al. Relationship between exposure to pazopanib (P) and efficacy in patients (pts) with advanced renal cell carcinoma (mRCC) [abstract no. 3048]. J Clin Oncol. 2010;28(15 suppl).

  93. Lin Y, Ball HA, Suttle B, et al. Relationship between plasma pazopanib concentration and incidence of adverse events in renal cell carcinoma [abstract no. 345]. J Clin Oncol. 2011;29(7 suppl).

  94. Pazopanib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001141/WC500094272.pdf. Accessed 21 Mar 2013.

  95. Use of individual PK-guided pazopanib dosing: a feasibility study in patients with advanced solid tumors. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=3967. Accessed 7 Jan 2014.

  96. Strumberg D, Clark J, Awada A. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist. 2007;12(4):426–37.

    PubMed  CAS  Google Scholar 

  97. Minami H, Kawada K, Ebi H, et al. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci. 2008;99(7):1492–8.

    PubMed  CAS  Google Scholar 

  98. Maki RG, D’Adamo DR, Keohan ML, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27(19):3133–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Kuckertz M, Patz M, Veldurthy A, et al. Comparison of the effects of two kinase inhibitors, sorafenib and dasatinib, on chronic lymphocytic leukemia cells. Onkologie. 2012;35(7–8):420–6.

    PubMed  CAS  Google Scholar 

  100. Christopher L, Cui D, Wu C, et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos. 2008;36(7):1357–64.

    PubMed  CAS  Google Scholar 

  101. Boudou-Rouquette P, Narjoz C, Golmard JL, et al. Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One. 2012;7(8):e42875.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Blanchet B, Billemont B, Cramard J, et al. Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal. 2009;49(4):1109–14.

    PubMed  CAS  Google Scholar 

  103. Fukudo M, Ito T, Mizuno T, et al. Exposure–toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet. 2014;53:185–96.

    PubMed  CAS  Google Scholar 

  104. Arrondeau J, Mir O, Boudou-Rouquette P, et al. Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Invest New Drugs. 2012;30(5):2046–9.

    PubMed  CAS  Google Scholar 

  105. Tolcher AW, Appleman LJ, Shapiro GI, et al. A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer. Cancer Chemother Pharmacol. 2011;67(4):751–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Houk BE, Bello CL, Poland B, et al. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66(2):357–71.

    PubMed  CAS  Google Scholar 

  107. Sunitinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000687/WC500057737.pdf. Accessed 16 Jul 2013.

  108. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24(1):25–35.

    PubMed  CAS  Google Scholar 

  109. Shirao K, Nishida T, Doi T, et al. Phase I/II study of sunitinib malate in Japanese patients with gastrointestinal stromal tumor after failure of prior treatment with imatinib mesylate. Invest New Drugs. 2009;28(6):866–75.

    Google Scholar 

  110. Van Erp NP, Baker SD, Sparreboom A, et al. Relationship between CYP3A4 phenotype and sunitinib exposure in cancer patients. https://openaccess.leidenuniv.nl/bitstream/handle/1887/14515/06.pdf?sequence=11. Accessed 16 Jul 2013.

  111. Abrams TJ, Lee LB, Murray LJ, et al. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther. 2003;2(5):471–8.

    PubMed  CAS  Google Scholar 

  112. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327–37.

    PubMed  CAS  Google Scholar 

  113. Murray LJ, Abrams TJ, Long KR, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis. 2003;20(8):757–66.

    PubMed  CAS  Google Scholar 

  114. Abrams TJ, Murray LJ, Pesenti E, et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther. 2003;2(10):1011–21.

    PubMed  CAS  Google Scholar 

  115. Lankheet NAG, Kloth JSL, Gadellaa-van Hooijdonk CGM, et al. Individual PK-guided sunitinib dosing: A feasibility study in patients with advanced solid tumors [abstract no. 2596]. J Clin Oncol. 2012;30(15 suppl).

  116. George S, Blay JY, Casali PG, et al. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer. 2009;45(11):1959–68.

    PubMed  CAS  Google Scholar 

  117. Li J, Gao J, Hong J, et al. Efficacy and safety of sunitinib in Chinese patients with imatinib-resistant or -intolerant gastrointestinal stromal tumors. Future Oncol. 2012;8(5):617–24.

    PubMed  CAS  Google Scholar 

  118. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62(16):4645–55.

    PubMed  CAS  Google Scholar 

  119. Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.

    PubMed  CAS  Google Scholar 

  120. Flaherty KT, Puzanov I, Kim KB. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Khazak V, Astsaturov I, Serebriiskii IG, et al. Selective Raf inhibition in cancer therapy. Expert Opin Ther Targets. 2007;11(12):1587–609.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Miller VA, Johnson DH, Krug LM, et al. Pilot trial of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib plus carboplatin and paclitaxel in patients with stage IIIB or IV non-small-cell lung cancer. J Clin Oncol. 2003;21(11):2094–100.

    PubMed  CAS  Google Scholar 

  125. Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol. 2004;22(5):935–42.

    PubMed  CAS  Google Scholar 

  126. Ou S-HI. Crizotinib: a novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged non-small cell lung cancer and beyond. Drug Des Devel Ther. 2011;5:471–85.

    PubMed Central  PubMed  Google Scholar 

  127. Ling J, Fettner S, Lum BL, et al. Effect of food on the pharmacokinetics of erlotinib, an orally active epidermal growth factor receptor tyrosine-kinase inhibitor, in healthy individuals. Anticancer Drugs. 2008;19(2):209–16.

    PubMed  CAS  Google Scholar 

  128. Gefitinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001016/WC500036358.pdf. Accessed 10 Jun 2013.

  129. Imatinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000406/WC500022207.pdf. Accessed 26 Aug 2012.

  130. Koch KM, Reddy NJ, Cohen RB, et al. Effects of food on the relative bioavailability of lapatinib in cancer patients. J Clin Oncol. 2009;27(8):1191–6.

    PubMed  CAS  Google Scholar 

  131. Devriese LA, Koch KM, Mergui-Roelvink M, et al. Effects of low-fat and high-fat meals on steady-state pharmacokinetics of lapatinib in patients with advanced solid tumours. Invest New Drugs. Epub 2013 Dec 19.

  132. Szmulewitz RZ, Ratain MJ. Playing Russian roulette with tyrosine kinase inhibitors. Clin Pharmacol Ther. 2012;93(3):242–4.

    PubMed  Google Scholar 

  133. Nilotinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000798/WC500034394.pdf. Accessed 14 Jun 0213.

  134. Smith RP, Kennedy S, Robertson J, et al. The effect of food on the intra-subject variability of the pharmacokinetics of ZD6474, a novel antiangiogenic agent, in healthy subjects [abstract no. 3167]. J Clin Oncol 2004 ASCO Annu Meet Proc (Post-Meeting Ed);22(14S Jul 15 Suppl).

  135. Vemurafenib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002409/WC500124317.pdf. Accessed 17 Jul 2013.

  136. Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23(24):5474–83.

    PubMed  CAS  Google Scholar 

  137. Axitinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002406/WC500132188.pdf. Accessed 2 Jul 2013.

  138. Fujiwara Y, Kiyota N, Chayahara N, et al. Management of axitinib (AG-013736)-induced fatigue and thyroid dysfunction, and predictive biomarkers of axitinib exposure: results from phase I studies in Japanese patients. Invest New Drugs. 2012;30(3):1055–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  139. Kozloff MF, Martin LP, Krzakowski M, et al. Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours. Br J Cancer. 2012;107(8):1277–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Martin LP, Kozloff MF, Herbst RS, et al. Phase I study of axitinib combined with paclitaxel, docetaxel or capecitabine in patients with advanced solid tumours. Br J Cancer. 2012;107(8):1268–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Mukohara T, Nakajima H, Mukai H, et al. Effect of axitinib (AG-013736) on fatigue, thyroid-stimulating hormone, and biomarkers: a phase I study in Japanese patients. Cancer Sci. 2010;101(4):963–8.

    PubMed  CAS  Google Scholar 

  142. Crizotinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002489/WC500134759.pdf. Accessed 19 Nov 2013.

  143. Li C, Alvey C, Bello A, et al. Pharmacokinetics (PK) of crizotinib (PF-02341066) in patients with advanced non-small cell lung cancer (NSCLC) and other solid tumors [abstract no. e13065]. J Clin Oncol. 2011;29(15 suppl).

  144. Dasatinib EMA scientific discussion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000709/WC500056995.pdf. Accessed 9 Jul 2013.

  145. Okusaka T, Furuse J, Funakoshi A, et al. Phase II study of erlotinib plus gemcitabine in Japanese patients with unresectable pancreatic cancer. Cancer Sci. 2011;102(2):425–31.

    PubMed  CAS  Google Scholar 

  146. Raizer JJ, Abrey LE, Lassman AB, et al. A phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro Oncol. 2010;12(1):87–94.

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Li J, Karlsson MO, Brahmer J, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst. 2006;98(23):1714–23.

    PubMed  CAS  Google Scholar 

  148. Horak J, White J, Harris AL, et al. The effect of different etiologies of hepatic impairment on the pharmacokinetics of gefitinib. Cancer Chemother Pharmacol. 2011;68(6):1485–95.

    PubMed  CAS  Google Scholar 

  149. Kitagawa D, Yokota K, Gouda M, et al. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells. 2013;18(2):110–22.

    PubMed  CAS  Google Scholar 

  150. Kawaguchi T, Hamada A, Hirayama C, et al. Relationship between an effective dose of imatinib, body surface area, and trough drug levels in patients with chronic myeloid leukemia. Int J Hematol. 2009;89(5):642–8.

    PubMed  CAS  Google Scholar 

  151. Siegel-Lakhai WS, Beijnen JH, Vervenne WL, et al. Phase I pharmacokinetic study of the safety and tolerability of lapatinib (GW572016) in combination with oxaliplatin/fluorouracil/leucovorin (FOLFOX4) in patients with solid tumors. Clin Cancer Res. 2007;13(15):4495–502.

    PubMed  CAS  Google Scholar 

  152. Chu QSC, Cianfrocca ME, Goldstein LJ, et al. A phase I and pharmacokinetic study of lapatinib in combination with letrozole in patients with advanced cancer. Clin Cancer Res. 2008;14(14):4484–90.

    PubMed  CAS  Google Scholar 

  153. Rezai K, Urien S, Isambert N, et al. Pharmacokinetic evaluation of the vinorelbine–lapatinib combination in the treatment of breast cancer patients. Cancer Chemother Pharmacol. 2011;68(6):1529–36.

    PubMed  CAS  Google Scholar 

  154. Lapatinib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000795/WC500044957.pdf. Accessed 17 Jul 2013.

  155. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    PubMed  Google Scholar 

  156. Shibata SI, Chung V, Synold TW, et al. Phase I study of pazopanib in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. Clin Cancer Res. 2013;19(13):3631–9.

    PubMed  CAS  Google Scholar 

  157. Sorafenib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000690/WC500027704.pdf. Accessed 16 Jul 2013.

  158. Jain L, Woo S, Gardner ER, et al. Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol. 2011;72(2):294–305.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Novello S, Scagliotti GV, Rosell R, et al. Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer. Br J Cancer. 2009;101(9):1543–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  160. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    PubMed  CAS  Google Scholar 

  161. Britten C, Kabbinavar F, Hecht J. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol. 2008;61:515–24.

    PubMed  CAS  Google Scholar 

  162. Vandetanib_EMA. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002315/WC500123555.pdf. Accessed 16 Jul 2013.

  163. Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16(8):1391–7.

    PubMed  CAS  Google Scholar 

  164. Tamura T, Minami H, Yamada Y, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1(9):1002–9.

    PubMed  Google Scholar 

  165. Zhang L, Li S, Zhang Y, et al. Pharmacokinetics and tolerability of vandetanib in Chinese patients with solid, malignant tumors: an open-label, phase I, rising multiple-dose study. Clin Ther. 2011;33(3):315–27.

    PubMed  CAS  Google Scholar 

Download references

Funding and conflicts of interest

No sources of funding were used to assist in the preparation of this manuscript. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Steeghs, N., Nijenhuis, C.M. et al. Practical Guidelines for Therapeutic Drug Monitoring of Anticancer Tyrosine Kinase Inhibitors: Focus on the Pharmacokinetic Targets. Clin Pharmacokinet 53, 305–325 (2014). https://doi.org/10.1007/s40262-014-0137-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0137-2

Keywords

Navigation