Skip to main content

Advertisement

Log in

Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Backgrounds

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by a clonal accumulation of mature apoptosis-resistant neoplastic cells. It is also a heterogeneous disease with a variable clinical outcome. Here, we present a review of currently known (epi)genetic alterations that are related to the etiology, progression and chemo-refractoriness of CLL. Relevant literature was identified through a PubMed search (1994–2014) of English-language papers using the terms CLL, signaling pathway, cytogenetic abnormality, somatic mutation, epigenetic alteration and micro-RNA.

Results

CLL is characterized by the presence of gross chromosomal abnormalities, epigenetic alterations, micro-RNA expression alterations, immunoglobulin heavy chain gene mutations and other genetic lesions. The expression of unmutated immunoglobulin heavy chain variable region (IGHV) genes, ZAP-70 and CD38 proteins, the occurrence of chromosomal abnormalities such as 17p and 11q deletions and mutations of the NOTCH1, SF3B1 and BIRC3 genes have been associated with a poor prognosis. In addition, mutations in tumor suppressor genes, such as TP53 and ATM, have been associated with refractoriness to conventional chemotherapeutic agents. Micro-RNA expression alterations and aberrant methylation patterns in genes that are specifically deregulated in CLL, including the BCL-2, TCL1 and ZAP-70 genes, have also been encountered and linked to distinct clinical parameters.

Conclusions

Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F. Talab, J.C. Allen, V. Thompson, K. Lin, J.R. Slupsky, LCK is an important mediator of B-cell receptor signaling in chronic lymphocytic leukemia cells. Mol. Cancer Res. 11, 541–554 (2013)

    CAS  PubMed  Google Scholar 

  2. T. Robak, Inhibitors of B-Cell receptor signaling for the treatment of chronic lymphocytic leukemia. J. Leuk. 1, 101 (2013)

    Google Scholar 

  3. G. Dighiero, T. Hamblin, Chronic lymphocytic leukaemia. Lancet 371, 1017–1029 (2008)

    CAS  PubMed  Google Scholar 

  4. C. Rozman, E. Montserrat, Chronic lymphocytic leukemia. N. Engl. J. Med. 333, 1052–1057 (1995)

    CAS  PubMed  Google Scholar 

  5. J.A. Zwiebel and B.D. Semin. Oncol. 42–59 (1998).

  6. S.E. Herman, A.L. Gordon, A.J. Wagner, N.A. Heerema, W. Zhao, J.M. Flynn, J. Jones, L. Andritsos, K.D. Puri, B.J. Lannutti, Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116, 2078–2088 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  7. E. Matutes, R. Morilla, K. Owusu-Ankomah, A. Houlihan, D. Catovsky, The immunophenotype of splenic lymphoma with villous lymphocytes and its relevance to the differential diagnosis with other B-cell disorders. Blood 83, 1558–1562 (1994)

    CAS  PubMed  Google Scholar 

  8. E. Matutes, K. Owusu-Ankomah, R. Morilla, M.J. Garcia, A. Houlihan, T. Que, D. Catovsky, The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 8, 1640–1645 (1994)

    CAS  PubMed  Google Scholar 

  9. R.E. Shackelford, A.R. Bhalodia, J.D. Cotelingam, D.M. Veillon, M. Lowery-Nordberg, Increased transferrin receptor expression following 11q23 deletion as a mechanism of malignant progression in chronic lymphocytic leukemia. Med. Hypotheses 66, 509–512 (2006)

    CAS  PubMed  Google Scholar 

  10. S. Willimott, D. Beck, M.J. Ahearne, V.C. Adams, S.D. Wagner, Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and-independent mechanisms in chronic lymphocytic leukemia. Clin. Cancer Res. 19, 3212–3223 (2013)

    CAS  PubMed  Google Scholar 

  11. J. Chen, N.A. McMillan, Molecular basis of pathogenesis, prognosis and therapy in chronic lymphocytic leukaemia. Cancer Biol. Ther. 7, 174 (2008)

    CAS  PubMed  Google Scholar 

  12. A.E. Rodríguez-Vicente, M.G. Díaz, J.M. Hernandez-Rivas, Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 206, 49–62 (2013)

    PubMed  Google Scholar 

  13. Y. Pekarsky, N. Zanesi, C.M. Croce, Molecular basis of CLL. Semin. Cancer Biol. 20, 370–376 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  14. N. Chiorazzi, K.R. Rai, M. Ferrarini, Chronic lymphocytic leukemia. N. Engl. J. Med. 352, 804–815 (2005)

    CAS  PubMed  Google Scholar 

  15. M.L. Palomba, K. Piersanti, C.G. Ziegler, H. Decker, J.W. Cotari, K. Bantilan, I. Rijo, J.R. Gardner, M. Heaney, D. Bemis, Multidimensional single-cell analysis of BCR signaling reveals proximal activation defect as a hallmark of chronic lymphocytic leukemia B cells. PLoS One 9, e79987 (2014)

    PubMed Central  PubMed  Google Scholar 

  16. S. Stilgenbauer, T. Zenz, Genetics in chronic lymphocytic leukemia. Leukemia 16, 993–1007 (2002)

    CAS  PubMed  Google Scholar 

  17. D. Mertens, S. Stilgenbauer, Prognostic and predictive factors in patients with chronic lymphocytic leukemia: relevant in the era of novel treatment approaches? J. Clin. Oncol. 32, 869–872 (2014)

    PubMed  Google Scholar 

  18. J. Ma, C. Dong, C. Ji, MicroRNA and drug resistance. Cancer Gene Ther. 17, 523–531 (2010)

    CAS  PubMed  Google Scholar 

  19. R. Rosenquist, D. Cortese, S. Bhoi, L. Mansouri, R. Gunnarsson, Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk. Lymphoma 54, 2351–2364 (2013)

    CAS  PubMed  Google Scholar 

  20. E. San Jose-Eneriz, X. Agirre, P. Rodríguez-Otero, F. Prosper, Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics. 5, 525–538 (2013)

    CAS  PubMed  Google Scholar 

  21. L. Mansouri, N. Cahill, R. Gunnarsson, K.E. Smedby, E. Tjönnfjord, H. Hjalgrim, G. Juliusson, C. Geisler, R. Rosenquist, NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 27, 512–514 (2012)

    PubMed  Google Scholar 

  22. L. Mansouri, P. Grabowski, S. Degerman, U. Svenson, R. Gunnarsson, N. Cahill, K.E. Smedby, C. Geisler, G. Juliusson, G. Roos, Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am. J. Hematol. 88, 647–651 (2013)

    CAS  PubMed  Google Scholar 

  23. D. Rossi, S. Rasi, V. Spina, A. Bruscaggin, S. Monti, C. Ciardullo, C. Deambrogi, H. Khiabanian, R. Serra, F. Bertoni, Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 121, 1403–1412 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  24. J.A. Burger, Inhibiting B-cell receptor signaling pathways in chronic lymphocytic leukemia. Curr. Hematol. Malig. Rep. 7, 26–33 (2012)

    PubMed  Google Scholar 

  25. G. Gaidano, R. Foà, R. Dalla-Favera, Molecular pathogenesis of chronic lymphocytic leukemia. J. Clin. Invest. 122, 3432–3438 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  26. M. Hallek, Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 88, 803–816 (2013)

    CAS  PubMed  Google Scholar 

  27. E. Tausch, D. Mertens, S. Stilgenbauer, Advances in treating chronic lymphocytic leukemia. F1000Prime Rep. 6, 65 (2014)

    PubMed Central  PubMed  Google Scholar 

  28. R. Foà, I. Del Giudice, A. Guarini, D. Rossi, G. Gaidano, Clinical implications of the molecular genetics of chronic lymphocytic leukemia. Haematologica 98, 675–685 (2013)

    PubMed Central  PubMed  Google Scholar 

  29. P.C. Monroig, G.A. Calin, MicroRNA and epigenetics: diagnostic and therapeutic opportunities. Curr. Pathobiol. Rep. 1, 43–52 (2013)

    PubMed Central  PubMed  Google Scholar 

  30. L.R. Corsini, G. Bronte, M. Terrasi, V. Amodeo, D. Fanale, E. Fiorentino, G. Cicero, V. Bazan, A. Russo, The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin. Ther. Targets 16, S103–S109 (2012)

    CAS  PubMed  Google Scholar 

  31. P. Li, X. Wang, Role of signaling pathways and miRNAs in chronic lymphocytic leukemia. Chin. Med. J. (Engl.) 126, 4175–4182 (2013)

    CAS  Google Scholar 

  32. L.P. Frenzel, R. Claus, N. Plume, J. Schwamb, C. Konermann, C.P. Pallasch, J. Claasen, R. Brinker, B. Wollnik, C. Plass, Sustained NF‐kappaB activity in chronic lymphocytic leukemia is independent of genetic and epigenetic alterations in the TNFAIP3 (A20) locus. Int. J. Cancer 128, 2495–2500 (2011)

    CAS  PubMed  Google Scholar 

  33. R. Horie, M. Watanabe, T. Okamura, M. Taira, M. Shoda, T. Motoji, A. Utsunomiya, T. Watanabe, M. Higashihara, K. Umezawa, DHMEQ, a new NF-κB inhibitor, induces apoptosis and enhances fludarabine effects on chronic lymphocytic leukemia cells. Leukemia 20, 800–806 (2006)

    CAS  PubMed  Google Scholar 

  34. L. Coll-Mulet, D. Iglesias-Serret, A.F. Santidrián, A.M. Cosialls, M. de Frias, E. Castaño, C. Campàs, M. Barragán, A.F. de Sevilla, A. Domingo, MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107, 4109–4114 (2006)

    CAS  PubMed  Google Scholar 

  35. K. Kojima, M. Konopleva, T. McQueen, S. O’Brien, W. Plunkett, M. Andreeff, Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108, 993–1000 (2006)

    PubMed Central  CAS  PubMed  Google Scholar 

  36. D.A. Carney, W.G. Wierda, Genetics and molecular biology of chronic lymphocytic leukemia. Curr. Treat Options Oncol. 6, 215–225 (2005)

    PubMed  Google Scholar 

  37. C. Haferlach, F. Dicker, S. Schnittger, W. Kern, T. Haferlach, Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH. IgVH status and immunophenotyping. Leukemia 21, 2442–2451 (2007)

    CAS  PubMed  Google Scholar 

  38. D. Pfeifer, M. Pantic, I. Skatulla, J. Rawluk, C. Kreutz, U.M. Martens, P. Fisch, J. Timmer, H. Veelken, Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 109, 1202–1210 (2007)

    CAS  PubMed  Google Scholar 

  39. J.Y. Hehir-Kwa, M. Egmont-Petersen, I.M. Janssen, D. Smeets, A. Geurts van Kessel, J.A. Veltman, Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis. DNA Res. 14, 1–11 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  40. C. Meldrum, M.A. Doyle, R.W. Tothill, Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev. 32, 177 (2011)

    PubMed Central  PubMed  Google Scholar 

  41. G. Fabbri, S. Rasi, D. Rossi, V. Trifonov, H. Khiabanian, J. Ma, A. Grunn, M. Fangazio, D. Capello, S. Monti, Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  42. L. Wang, M.S. Lawrence, Y. Wan, P. Stojanov, C. Sougnez, K. Stevenson, L. Werner, A. Sivachenko, D.S. DeLuca, L. Zhang, SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  43. S. Azizidoost, S. Babashah, F. Rahim, M. Shahjahani, N. Saki, Bone marrow neoplastic niche in leukemia. Hematology 19, 232–238 (2014)

    CAS  PubMed  Google Scholar 

  44. J.A. Burger, J.G. Gribben, Semin. Cancer Biol. 24, 71–81 (2014)

    CAS  PubMed  Google Scholar 

  45. A.N. Kamdje, G. Bassi, L. Pacelli, G. Malpeli, E. Amati, I. Nichele, G. Pizzolo, M. Krampera, Role of stromal cell-mediated notch signaling in CLL resistance to chemotherapy. Blood Cancer J. 2, e73 (2012)

    PubMed Central  Google Scholar 

  46. F. Saba, M. Soleimani, A. Atashi, E. Mortaz, M. Shahjahani, E. Roshandel, K. Jaseb, N. Saki, The role of the nervous system in hematopoietic stem cell mobilization. Lab. Hematol. 19, 8–16 (2013)

    PubMed  Google Scholar 

  47. A. Wiestner, Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 120, 4684–4691 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  48. N. Saki, S. Abroun, M.F. Hagh, F. Asgharei, Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 13, 131 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  49. M.F. de Rooij, A. Kuil, C.R. Geest, E. Eldering, B.Y. Chang, J.J. Buggy, S.T. Pals, M. Spaargaren, The clinically active BTK inhibitor PCI-32765 targets B-cell receptor–and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119, 2590–2594 (2012)

    PubMed  Google Scholar 

  50. J. Hoellenriegel, S.A. Meadows, M. Sivina, W.G. Wierda, H. Kantarjian, M.J. Keating, N. Giese, S. O’Brien, A. Yu, L.L. Miller, The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118, 3603–3612 (2011)

    CAS  PubMed  Google Scholar 

  51. S. López-Giral, N.E. Quintana, M. Cabrerizo, M. Alfonso-Pérez, M. Sala-Valdés, V.G.G. de Soria, J.M. Fernández-Rañada, E. Fernández-Ruiz, C. Muñoz, Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J. Leukoc. Biol. 76, 462–471 (2004)

    PubMed  Google Scholar 

  52. J.A. Burger, M. Burger, T.J. Kipps, Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94, 3658–3667 (1999)

    CAS  PubMed  Google Scholar 

  53. J. Barretina, J. Junca, A. Llano, A. Gutierrez, A. Flores, J. Blanco, B. Clotet, J. Este, CXCR4 and SDF-1 expression in B-cell chronic lymphocytic leukemia and stage of the disease. Ann. Hematol. 82, 500–505 (2003)

    CAS  PubMed  Google Scholar 

  54. F. Bennett, A. Rawstron, M. Plummer, R. Tute, P. Moreton, A. Jack, P. Hillmen, B‐cell chronic lymphocytic leukaemia cells show specific changes in membrane protein expression during different stages of cell cycle. Br. J. Haematol. 139, 600–604 (2007)

    PubMed  Google Scholar 

  55. G. Müller, U.E. Höpken, M. Lipp, The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol. Rev. 195, 117–135 (2003)

    PubMed  Google Scholar 

  56. J.A. Burger, M.P. Quiroga, E. Hartmann, A. Bürkle, W.G. Wierda, M.J. Keating, A. Rosenwald, High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113, 3050–3058 (2009)

    CAS  PubMed  Google Scholar 

  57. A. Shaffer, X. Yu, Y. He, J. Boldrick, E.P. Chan, L.M. Staudt, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000)

    CAS  PubMed  Google Scholar 

  58. A. Zucchetto, C. Tripodo, D. Benedetti, S. Deaglio, G. Gaidano, G. Del Poeta, V. Gattei, Monocytes/macrophages but not T lymphocytes are the major targets of the CCL3/CCL4 chemokines produced by CD38+ CD49d + chronic lymphocytic leukaemia cells. Br. J. Haematol. 150, 111–112 (2010)

    CAS  PubMed  Google Scholar 

  59. J.A. Burger, N. Chiorazzi, B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 34, 592–601 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  60. S. Mehdi Hoseini, F. Montazeri, A.M. Froughmand, M. Dehghani, H.R. Ghadimi, Introduction to genetic testing–applications, advantages and disadvantages. Genet 3rd millennium 12, 3544–3563 (2014)

    Google Scholar 

  61. G. Juliusson, D.G. Oscier, M. Fitchett, F.M. Ross, G. Stockdill, M.J. Mackie, A.C. Parker, G.L. Castoldi, A. Cuneo, S. Knuutila, Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl. J. Med. 323, 720–724 (1990)

    CAS  PubMed  Google Scholar 

  62. J.J. Yunis, High resolution of human chromosomes. Science 191, 1268–1270 (1976)

    CAS  PubMed  Google Scholar 

  63. M. Stevens-Kroef, A. Simons, H. Gorissen, T. Feuth, D.O. Weghuis, A. Buijs, R. Raymakers, A. Geurts van Kessel, Identification of chromosomal abnormalities relevant to prognosis in chronic lymphocytic leukemia using multiplex ligation-dependent probe amplification. Cancer Genet. Cytogenet. 195, 97–104 (2009)

    CAS  PubMed  Google Scholar 

  64. N.P. Carter, Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39, S16–S21 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  65. M.J. Stevens-Kroef, E. van den Berg, D. Olde Weghuis, A. Geurts van Kessel, R. Pfundt, M. Linssen-Wiersma, M. Benjamins, T. Dijkhuizen, P.J. Groenen, A. Simons, Identification of prognostic relevant chromosomal abnormalities in chronic lymphocytic leukemia using microarray-based genomic profiling. Mol. Cytogenet. 7, 3 (2014)

    PubMed Central  PubMed  Google Scholar 

  66. A.M. Snijders, D. Pinkel, D.G. Albertson, Current status and future prospects of array-based comparative genomic hybridisation. Brief Funct. Genom Proteomic. 2, 37–45 (2003)

    CAS  Google Scholar 

  67. L.E. Vissers, J.A. Veltman, A. Geurts van Kessel, H.G. Brunner, Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet. 14, R215–R223 (2005)

    CAS  PubMed  Google Scholar 

  68. A. Cuneo, G. Rigolin, R. Bigoni, C. De Angeli, A. Veronese, F. Cavazzini, A. Bardi, M. Roberti, E. Tammiso, P. Agostini, Chronic lymphocytic leukemia with 6q − shows distinct hematological features and intermediate prognosis. Leukemia 18, 476–483 (2003)

    Google Scholar 

  69. H. Döhner, S. Stilgenbauer, A. Benner, E. Leupolt, A. Kröber, L. Bullinger, K. Döhner, M. Bentz, P. Lichter, Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1910–1916 (2000)

    PubMed  Google Scholar 

  70. T.S. Elton, H. Selemon, S.M. Elton, N.L. Parinandi, Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532, 1–12 (2013)

    CAS  PubMed  Google Scholar 

  71. D. Sampath, C. Liu, K. Vasan, M. Sulda, V.K. Puduvalli, W.G. Wierda, M.J. Keating, Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 119, 1162–1172 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  72. L.Q. Wang, Y.L. Kwong, K.F. Wong, C.S.B. Kho, D.Y. Jin, E. Tse, A. Rosèn, C.S. Chim, Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J. Transl. Med. 12, 52 (2014)

    PubMed Central  PubMed  Google Scholar 

  73. Y.-y. Lai, X.-j. Huang, Cytogenetic characteristics of B cell chronic lymphocytic leukemia in 275 Chinese patients by fluorescence in situ hybridization: a multicenter study. Chin. Med. J. (Engl) 124, 2417 (2011)

    Google Scholar 

  74. U. Rozovski, G.A. Calin, T. Setoyama, L. D’Abundo, D.M. Harris, P. Li, Z. Liu, S. Grgurevic, A. Ferrajoli, S. Faderl, Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells. Mol. Cancer 12, 50 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  75. T. Herold, V. Jurinovic, M. Mulaw, T. Seiler, A. Dufour, S. Schneider, P.M. Kakadia, M. Feuring‐Buske, J. Braess, K. Spiekermann, Expression analysis of genes located in the minimally deleted regions of 13q14 and 11q22‐23 in chronic lymphocytic leukemia—unexpected expression pattern of the RHO GTPase activator ARHGAP20. Genes Chromosom. Cancer 50, 546–558 (2011)

    CAS  PubMed  Google Scholar 

  76. G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005)

    CAS  PubMed  Google Scholar 

  77. M. Ferracin, B. Zagatti, L. Rizzotto, F. Cavazzini, A. Veronese, M. Ciccone, E. Saccenti, L. Lupini, A. Grilli, C. De Angeli, MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol. Cancer 9, 123 (2010)

    PubMed Central  PubMed  Google Scholar 

  78. N. Cahill, R. Rosenquist, Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 8, 138 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  79. S. Kalachikov, A. Migliazza, E. Cayanis, N. Fracchiolla, M. Bonaldo, L. Lawton, P. Jelenc, X. Ye, X. Qu, M. Chien, Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 42, 369–377 (1997)

    CAS  PubMed  Google Scholar 

  80. S. Stilgenbauer, S. Sander, L. Bullinger, A. Benner, E. Leupolt, D. Winkler, A. Kröber, D. Kienle, P. Lichter, H. Döhner, Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 92, 1242–1245 (2007)

    PubMed  Google Scholar 

  81. J.Á. Hernández, A.E. Rodríguez, M. González, R. Benito, C. Fontanillo, V. Sandoval, M. Romero, G. Martín-Núñez, A.G. de Coca, R. Fisac, A high number of losses in 13q14 chromosome band is associated with a worse outcome and biological differences in patients with B-cell chronic lymphoid leukemia. Haematologica 94, 364–371 (2009)

    PubMed Central  PubMed  Google Scholar 

  82. D.L. Van Dyke, T.D. Shanafelt, T.G. Call, C.S. Zent, S.A. Smoley, K.G. Rabe, S.M. Schwager, J.C. Sonbert, S.L. Slager, N.E. Kay, A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B‐chronic lymphocytic leukaemia. Br. J. Haematol. 148, 544–550 (2010)

    PubMed Central  PubMed  Google Scholar 

  83. M. Dal Bo, F.M. Rossi, D. Rossi, C. Deambrogi, F. Bertoni, I. Del Giudice, G. Palumbo, M. Nanni, A. Rinaldi, I. Kwee, 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosom. Cancer 50, 633–643 (2011)

    CAS  PubMed  Google Scholar 

  84. J.R. Brown, Insulin receptor activation in deletion 11q chronic lymphocytic leukemia. Clin. Cancer Res. 17, 2605–2607 (2011)

    CAS  PubMed  Google Scholar 

  85. R. Karhu, S. Knuutila, O.P. Kallioniemi, S. Siitonen, R. Aine, L. Vilpo, J. Vilpo, Frequent loss of the 11q14‐24 region in chronic lymphocytic leukemia: a study by comparative genomic hybridization. Genes Chromosom. Cancer 19, 286–290 (1997)

    CAS  PubMed  Google Scholar 

  86. S.E. Artandi, L.D. Attardi, Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem. Biophys. Res. Commun. 331, 881–890 (2005)

    CAS  PubMed  Google Scholar 

  87. M.F. Lavin, Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008)

    CAS  PubMed  Google Scholar 

  88. A. Pérez-Perarnau, L. Coll-Mulet, C. Rubio-Patiño, D. Iglesias-Serret, A.M. Cosialls, D.M. González-Gironès, M. de Frias, A.F. de Sevilla, E. de la Banda, G. Pons, Analysis of apoptosis regulatory genes altered by histone deacetylase inhibitors in chronic lymphocytic leukemia cells. Epigenetics 6, 1228–1235 (2011)

    PubMed  Google Scholar 

  89. D. Rossi, M. Cerri, C. Deambrogi, E. Sozzi, S. Cresta, S. Rasi, L. De Paoli, V. Spina, V. Gattei, D. Capello, The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin. Cancer Res. 15, 995–1004 (2009)

    CAS  PubMed  Google Scholar 

  90. P. Hillmen, A.B.. Skotnicki, T. Robak, B. Jaksic, A. Dmoszynska, J. Wu, C. Sirard, J. Mayer, Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 25, 5616–5623 (2007)

  91. A.R. Pettitt, R. Jackson, S. Carruthers, J. Dodd, S. Dodd, M. Oates, G.G. Johnson, A. Schuh, E. Matutes, C.E. Dearden, Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J. Clin. Oncol. 30, 1647–1655 (2012)

    CAS  PubMed  Google Scholar 

  92. M. Bentz, A. Plesch, L. Bullinger, S. Stilgenbauer, G. Ott, H. Konrad Müller‐Hermelink, M. Baudis, T.F. Barth, P. Möller, P. Lichter, t (11; 14)‐positive mantle cell lymphomas exhibit complex karyotypes and share similarities with B‐cell chronic lymphocytic leukemia. Genes Chromosom. Cancer 27, 285–294 (2000)

    CAS  PubMed  Google Scholar 

  93. M. Merup, G. Juliusson, X. Wu, M. Jansson, B. Stellan, O. Rasool, E. Röijer, G. Stenman, G. Gahrton, S. Einhorn, Amplification of multiple regions of chromosome 12, including 12q13–15, in chronic lymphocytic leukaemia. Eur. J. Haematol. 58, 174–180 (1997)

    CAS  PubMed  Google Scholar 

  94. P. Josefsson, C.H. Geisler, H. Leffers, J.H. Petersen, M.K. Andersen, J. Jurlander, A.M. Buhl, CLLU1 expression analysis adds prognostic information to risk prediction in chronic lymphocytic leukemia. Blood 109, 4973–4979 (2007)

    CAS  PubMed  Google Scholar 

  95. C.Y. Ok, R.R. Singh, F. Vega, Aberrant activation of the hedgehog signaling pathway in malignant hematological neoplasms. Am. J. Pathol. 180, 2–11 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  96. G.V. Hegde, K.J. Peterson, K. Emanuel, A.K. Mittal, A.D. Joshi, J.D. Dickinson, G.J. Kollessery, R.G. Bociek, P. Bierman, J.M. Vose, Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol. Cancer Res. 6, 1928–1936 (2008)

    CAS  PubMed  Google Scholar 

  97. O. Morozova, M.A. Marra, Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255–264 (2008)

    CAS  PubMed  Google Scholar 

  98. R. Ekblom, J. Galindo, Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 107, 1–15 (2010)

    PubMed Central  PubMed  Google Scholar 

  99. D.A. Landau, S.L. Carter, P. Stojanov, A. McKenna, K. Stevenson, M.S. Lawrence, C. Sougnez, C. Stewart, A. Sivachenko, L. Wang, Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  100. X.S. Puente, M. Pinyol, V. Quesada, L. Conde, G.R. Ordóñez, N. Villamor, G. Escaramis, P. Jares, S. Beà, M. González-Díaz, Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  101. V. Quesada, L. Conde, N. Villamor, G.R. Ordóñez, P. Jares, L. Bassaganyas, A.J. Ramsay, S. Beà, M. Pinyol, A. Martínez-Trillos, Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012)

    CAS  Google Scholar 

  102. D. Rossi, C. Ciardullo, V. Spina, G. Gaidano, Molecular bases of chronic lymphocytic leukemia in light of new treatments. Immunol. Lett. 155, 51–55 (2013)

    CAS  PubMed  Google Scholar 

  103. D.A. Landau, C.J. Wu, Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med. 5, 47 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  104. D. Rossi, M. Fangazio, S. Rasi, T. Vaisitti, S. Monti, S. Cresta, S. Chiaretti, I. Del Giudice, G. Fabbri, A. Bruscaggin, Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119, 2854–2862 (2012)

    CAS  PubMed  Google Scholar 

  105. S. Vallabhapurapu, M. Karin, Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009)

    CAS  PubMed  Google Scholar 

  106. A. Martínez-Trillos, M. Pinyol, A. Navarro, M. Aymerich, P. Jares, M. Juan, M. Rozman, D. Colomer, J. Delgado, E. Giné, Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood 123, 3790–3796 (2014)

    PubMed  Google Scholar 

  107. S.-C. Lin, Y.-C. Lo, H. Wu, Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  108. D.G. Efremov, A. Wiestner, L. Laurenti, Novel agents and emerging strategies for targeting the B-cell receptor pathway in CLL. Mediterr. J. Hematol. Infect. Dis. 4, e2012067 (2012)

    PubMed Central  PubMed  Google Scholar 

  109. A.K. Ghosh, N.E. Kay, Critical signal transduction pathways in CLL. Adv. Exp. Med. Biol. 792, 215–239 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  110. A. Rosén, F. Murray, C. Evaldsson, R. Rosenquist, Antigens in chronic lymphocytic leukemia--implications for cell origin and leukemogenesis. Semin. Cancer Biol. 20, 400–409 (2010)

    PubMed  Google Scholar 

  111. F.K. Stevenson, S. Krysov, A.J. Davies, A.J. Steele, G. Packham, B-cell receptor signaling in chronic lymphocytic leukemia. Blood 118, 4313–4320 (2011)

    CAS  PubMed  Google Scholar 

  112. R.N. Damle, T. Wasil, F. Fais, F. Ghiotto, A. Valetto, S.L. Allen, A. Buchbinder, D. Budman, K. Dittmar, J. Kolitz, Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia presented in part at the 40th annual meeting of The American Society of Hematology, held in Miami Beach, FL, December 4–8, 1998. Blood 94, 1840–1847 (1999)

    CAS  PubMed  Google Scholar 

  113. T.J. Hamblin, Z. Davis, A. Gardiner, D.G. Oscier, F.K. Stevenson, Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999)

    CAS  PubMed  Google Scholar 

  114. R. Wickremasinghe, A. Prentice, A. Steele, p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25, 1400–1407 (2011)

    CAS  PubMed  Google Scholar 

  115. C.S. Tam, T.D. Shanafelt, W.G. Wierda, L.V. Abruzzo, D.L. Van Dyke, S. O’Brien, A. Ferrajoli, S.A. Lerner, A. Lynn, N.E. Kay, De novo deletion 17p13. 1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the MD Anderson and Mayo Clinic experience. Blood 114, 957–964 (2009)

    CAS  PubMed  Google Scholar 

  116. I. Cordone, S. Masi, F.R. Mauro, S. Soddu, O. Morsilli, T. Valentini, M.L. Vegna, C. Guglielmi, F. Mancini, S. Giuliacci, p53 expression in B-cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood 91, 4342–4349 (1998)

    CAS  PubMed  Google Scholar 

  117. T. Sperka, J. Wang, K.L. Rudolph, DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 13, 579–590 (2012)

    CAS  PubMed  Google Scholar 

  118. P. Ouillette, J. Li, R. Shaknovich, Y. Li, A. Melnick, K. Shedden, S.N. Malek, Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia. Genes Chromosom. Cancer 51, 1125–1132 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  119. B. Austen, J.E. Powell, A. Alvi, I. Edwards, L. Hooper, J. Starczynski, A.M.R. Taylor, C. Fegan, P. Moss, T. Stankovic, Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106, 3175–3182 (2005)

    CAS  PubMed  Google Scholar 

  120. B. Austen, A. Skowronska, C. Baker, J.E. Powell, A. Gardiner, D. Oscier, A. Majid, M. Dyer, R. Siebert, A.M. Taylor, Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J. Clin. Oncol. 25, 5448–5457 (2007)

    CAS  PubMed  Google Scholar 

  121. D. Rossi, G. Gaidano, ATM and chronic lymphocytic leukemia: mutations, and not only deletions, matter. Haematologica 97, 5–8 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  122. A. Guarini, M. Marinelli, S. Tavolaro, E. Bellacchio, M. Magliozzi, S. Chiaretti, M.S. De Propris, N. Peragine, S. Santangelo and F. Paoloni, ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica. 2011.049270 (2011)

  123. M.J. Rose-Zerilli, J. Forster, H. Parker, A. Parker, A.E. Rodríguez, T. Chaplin, A. Gardiner, A.J. Steele, A. Collins and B.D. Young, ATM mutation rather than BIRC3 deletion and/or mutation predicts reduced survival in 11q-deleted chronic lymphocytic leukemia, data from the UK LRF CLL4 trial. Haematologica. 2013.098574 (2014)

  124. C. Lobry, P. Oh, I. Aifantis, Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J. Exp. Med. 208, 1931–1935 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  125. J.S. Yuan, P.C. Kousis, S. Suliman, I. Visan, C.J. Guidos, Functions of notch signaling in the immune system: consensus and controversies. Annu. Rev. Immunol. 28, 343–365 (2009)

    Google Scholar 

  126. K.G. Leong, A. Karsan, Recent insights into the role of Notch signaling in tumorigenesis. Blood 107, 2223–2233 (2006)

    CAS  PubMed  Google Scholar 

  127. P. Sportoletti, S. Baldoni, L. Cavalli, B. Del Papa, E. Bonifacio, R. Ciurnelli, A.S. Bell, A. Di Tommaso, E. Rosati, B. Crescenzi, NOTCH1 PEST domain mutation is an adverse prognostic factor in B‐CLL. Br. J. Haematol. 151, 404–406 (2010)

    PubMed  Google Scholar 

  128. D. Rossi, S. Rasi, G. Fabbri, V. Spina, M. Fangazio, F. Forconi, R. Marasca, L. Laurenti, A. Bruscaggin, M. Cerri, Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119, 521–529 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  129. A. Ahmadzadeh, S. Saedi, K. Jaseb, A.A. Asnafi, A. Alghasi, N. Saki, T-cell acute lymphoblastic leukemia with del (7)(q11. 2q22) and aberrant expression of myeloid markers. Int. J. Hematol. Oncol. Stem Cell Res. 7, 40 (2013)

    PubMed Central  PubMed  Google Scholar 

  130. V. Balatti, A. Bottoni, A. Palamarchuk, H. Alder, L.Z. Rassenti, T.J. Kipps, Y. Pekarsky, C.M. Croce, NOTCH1 mutations in CLL associated with trisomy 12. Blood 119, 329–331 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  131. I. Del Giudice, D. Rossi, S. Chiaretti, M. Marinelli, S. Tavolaro, S. Gabrielli, L. Laurenti, R. Marasca, S. Rasi and M. Fangazio, NOTCH1 mutations in + 12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of + 12 CLL. Haematologica. 2011.060129 (2011)

  132. S. Weissmann, A. Roller, S. Jeromin, M. Hernández, M. Abáigar, J. Hernández-Rivas, V. Grossmann, C. Haferlach, W. Kern, T. Haferlach, Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia 27, 2393–2396 (2013)

    CAS  PubMed  Google Scholar 

  133. Y. Wan, C.J. Wu, SF3B1 mutations in chronic lymphocytic leukemia. Blood 121, 4627–4634 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  134. X. Liang, E.A. Moseman, M.A. Farrar, V. Bachanova, D.J. Weisdorf, B.R. Blazar, W. Chen, Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells. Blood 115, 5041–5052 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  135. E. Bourke, D. Bosisio, J. Golay, N. Polentarutti, A. Mantovani, The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 102, 956–963 (2003)

    PubMed  Google Scholar 

  136. E. Arvaniti, S. Ntoufa, N. Papakonstantinou, T. Touloumenidou, N. Laoutaris, A. Anagnostopoulos, K. Lamnissou, F. Caligaris-Cappio, K. Stamatopoulos, P. Ghia, Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenetic significance in specific subsets of patients. Haematologica 96, 1644–1652 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  137. D.J. Rawlings, M.A. Schwartz, S.W. Jackson, A. Meyer-Bahlburg, Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  138. V.N. Ngo, R.M. Young, R. Schmitz, S. Jhavar, W. Xiao, K.-H. Lim, H. Kohlhammer, W. Xu, Y. Yang, H. Zhao, Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011)

    CAS  PubMed  Google Scholar 

  139. K. Harikrishnan, S. Bassal, C. Tikellis, A. El-Osta, Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol. Ther. 3, 989–994 (2004)

    CAS  Google Scholar 

  140. J.A. Dubovsky, D. Wang, J.J. Powers, E. Berchmans, M.A. Smith, K.L. Wright, E.M. Sotomayor, J.A. Pinilla-Ibarz, Restoring the functional immunogenicity of chronic lymphocytic leukemia using epigenetic modifiers. Leuk. Res. 35, 394–404 (2011)

    CAS  PubMed  Google Scholar 

  141. E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents–implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)

  142. M. Kulis, S. Heath, M. Bibikova, A.C. Queirós, A. Navarro, G. Clot, A. Martínez-Trillos, G. Castellano, I. Brun-Heath, M. Pinyol, Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012)

    CAS  PubMed  Google Scholar 

  143. P. Tsirigotis, V. Pappa, S. Labropoulos, S. Papageorgiou, F. Kontsioti, J. Dervenoulas, E. Papageorgiou, A. Panani, G. Mantzios, T. Economopoulos, Mutational and methylation analysis of the cyclin‐dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur. J. Haematol. 76, 230–236 (2006)

    CAS  PubMed  Google Scholar 

  144. S.G. Papageorgiou, S. Lambropoulos, V. Pappa, C. Economopoulou, F. Kontsioti, E. Papageorgiou, P. Tsirigotis, J. Dervenoulas, T. Economopoulos, Hypermethylation of the p15INK4B gene promoter in B‐chronic lymphocytic leukemia. Am. J. Hematol. 82, 824–825 (2007)

    PubMed  Google Scholar 

  145. L. Pei, J.-H. Choi, J. Liu, E.-J. Lee, B. McCarthy, J.M. Wilson, E. Speir, F. Awan, H. Tae, G. Arthur, Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics. 7, 567 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  146. A.G. Buggins, C.J. Pepper, The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk. Res. 34, 837–842 (2010)

    CAS  PubMed  Google Scholar 

  147. S.-S. Chen, M.H. Sherman, E. Hertlein, A.J. Johnson, M.A. Teitell, J.C. Byrd, C. Plass, Epigenetic alterations in a murine model for chronic lymphocytic leukemia. Cell Cycle 8, 3663–3667 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  148. F.B. Rahmatpanah, S. Carstens, S.I. Hooshmand, E.C. Welsh, O. Sjahputera, K.H. Taylor, L.B. Bennett, H. Shi, J.W. Davis, G.L. Arthur, Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenetics. 1, 39–61 (2009)

    CAS  Google Scholar 

  149. M. Corcoran, A. Parker, J. Orchard, Z. Davis, M. Wirtz, O.J. Schmitz, D. Oscier, ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 90, 1078–1088 (2005)

    CAS  PubMed  Google Scholar 

  150. R. Claus, D.M. Lucas, S. Stilgenbauer, A.S. Ruppert, L. Yu, M. Zucknick, D. Mertens, A. Bühler, C.C. Oakes, R.A. Larson, Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30, 2483–2491 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  151. S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. (Dordr). 35, 317–334 (2012)

    CAS  PubMed  Google Scholar 

  152. K.Y. Wong, C.C. So, F. Loong, L.P. Chung, W.W.L. Lam, R. Liang, G.K.H. Li, D.-Y. Jin, C.S. Chim, Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One 6, e19027 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  153. L.Q. Wang, Y.L. Kwong, C.S.B. Kho, K.F. Wong, K.Y. Wong, M. Ferracin, G.A. Calin, C.S. Chim, Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFκB pathway. Mol. Cancer 7, 11 (2013)

    Google Scholar 

  154. C. Mercurio, S. Minucci, P.G. Pelicci, Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol. Res. 62, 18–34 (2010)

    CAS  PubMed  Google Scholar 

  155. S.M.A.H. Rad, M.S. Bavarsad, E. Arefian, K. Jaseb, M. Shahjahani, N. Saki, The role of microRNAs in stemness of cancer stem cells. Oncol. Rev. 7, 8 (2013)

    Google Scholar 

  156. L. Rask, E. Balslev, R. Sokilde, E. Hogdall, H. Flyger, J. Eriksen, T. Litman, Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell. Oncol. 37, 215–227 (2014)

  157. Y. Wang, M. Li, W. Zang, Y. Ma, N. Wang, P. Li, T. Wang, G. Zhao, MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell. Oncol. 36, 385–394 (2013)

  158. A. Veronese, F. Pepe, J. Chiacchia, S. Pagotto, P. Lanuti, S. Veschi, M. Di Marco, A. D’Argenio, I. Innocenti, B. Vannata, Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia (2014). doi:10.1038/leu.2014.139

    PubMed Central  PubMed  Google Scholar 

  159. S. Srivastava, G.J. Tsongalis, P. Kaur, Recent advances in microRNA-mediated gene regulation in chronic lymphocytic leukemia. Clin. Biochem. 46, 901–908 (2013)

    CAS  PubMed  Google Scholar 

  160. S.P. Nana-Sinkam, C.M. Croce, MicroRNA in chronic lymphocytic leukemia: transitioning from laboratory-based investigation to clinical application. Cancer Genet. Cytogenet. 203, 127–133 (2010)

    CAS  PubMed  Google Scholar 

  161. U. Klein, R. Dalla-Favera, New insights into the pathogenesis of chronic lymphocytic leukemia. Semin. Cancer Biol. 20, 377–383 (2010)

    CAS  PubMed  Google Scholar 

  162. J.L. Mott, S. Kobayashi, S.F. Bronk, G.J. Gores, mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26, 6133–6140 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Y. Pekarsky, U. Santanam, A. Cimmino, A. Palamarchuk, A. Efanov, V. Maximov, S. Volinia, H. Alder, C.-G. Liu, L. Rassenti, Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593 (2006)

    CAS  PubMed  Google Scholar 

  164. M. Herling, K. Patel, J. Khalili, E. Schlette, R. Kobayashi, L. Medeiros, D. Jones, TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 20, 280–285 (2005)

    Google Scholar 

  165. M. Mraz, M. Mraz, S. Pospisilova, K. Malinova, I. Slapak, J. Mayer, MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk. Lymphoma 50, 506–509 (2009)

    CAS  PubMed  Google Scholar 

  166. T. Zenz, S. Häbe, T. Denzel, J. Mohr, D. Winkler, A. Bühler, A. Sarno, S. Groner, D. Mertens, R. Busch, Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114, 2589–2597 (2009)

    CAS  PubMed  Google Scholar 

  167. F. Caligaris-Cappio, Chronic lymphocytic leukemia (CLL): a model for understanding and treating chronic B-cell malignancies. Rinsho Ketsueki. 54, 1838 (2013)

    PubMed  Google Scholar 

  168. R. Visone, L.Z. Rassenti, A. Veronese, C. Taccioli, S. Costinean, B.D. Aguda, S. Volinia, M. Ferracin, J. Palatini, V. Balatti, Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 114, 3872–3879 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  169. S. Rossi, M. Shimizu, E. Barbarotto, M.S. Nicoloso, F. Dimitri, D. Sampath, M. Fabbri, S. Lerner, L.L. Barron, L.Z. Rassenti, microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116, 945–952 (2010)

    CAS  PubMed  Google Scholar 

  170. C. Baer, R. Claus, L.P. Frenzel, M. Zucknick, Y.J. Park, L. Gu, D. Weichenhan, M. Fischer, C.P. Pallasch, E. Herpel, Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 72, 3775–3785 (2012)

    CAS  PubMed  Google Scholar 

  171. M. Xu, Y.-Y. Mo, The AKT-associated microRNAs. Cell. Mol. Life Sci. 69, 3601–3612 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  172. M.A. Lindsay, microRNAs and the immune response. Trends Immunol. 29, 343–351 (2008)

    CAS  PubMed  Google Scholar 

  173. M. Frenquelli, M. Muzio, C. Scielzo, C. Fazi, L. Scarfò, C. Rossi, G. Ferrari, P. Ghia, F. Caligaris-Cappio, MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 115, 3949–3959 (2010)

    CAS  PubMed  Google Scholar 

  174. B. Stamatopoulos, N. Meuleman, B. Haibe-Kains, P. Saussoy, E. Van Den Neste, L. Michaux, P. Heimann, P. Martiat, D. Bron, L. Lagneaux, microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 113, 5237–5245 (2009)

    CAS  PubMed  Google Scholar 

  175. K. Zhou, S. Yi, Z. Yu, Z. Li, Y. Wang, D. Zou, J. Qi, Y. Zhao, L. Qiu, MicroRNA-223 expression is uniformly down-regulated in B cell lymphoproliferative disorders and is associated with poor survival in patients with chronic lymphocytic leukemia. Leuk. Lymphoma 53, 1155–1161 (2012)

    CAS  PubMed  Google Scholar 

  176. Z. Hua, W. Chun, C. Fang-yuan, MicroRNA-146a and hemopoietic disorders. Int. J. Hematol. 94, 224–229 (2011)

    PubMed  Google Scholar 

  177. J. Redondo-Muñoz, E. Escobar-Díaz, R. Samaniego, M.J. Terol, J.A. García-Marco, Á. García-Pardo, MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by α4β1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 108, 3143–3151 (2006)

    PubMed  Google Scholar 

  178. J. Hayes, P.P. Peruzzi, S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 8, 460–469 (2014)

    Google Scholar 

Download references

Acknowledgments

We wish to thank all our colleagues in the Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Additional information

Authors’ contributions

N.S. and M.Sh conceived the manuscript and revised it. M.S, J.M., M.Sh. and F.N. wrote the manuscript. F.S and F.N. prepared the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahjahani, M., Mohammadiasl, J., Noroozi, F. et al. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol. 38, 93–109 (2015). https://doi.org/10.1007/s13402-014-0215-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0215-3

Keywords

Navigation