Skip to main content

Advertisement

Log in

A comprehensive insight on ocular pharmacokinetics

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment models of ocular drug delivery have been developed for describing the absorption, distribution, and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems, and routes of administration is discussed including factors affecting intraocular bioavailability. Factors such as precorneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, and drug metabolism render ocular delivery challenging and are elaborated in this manuscript. Several compartment models are discussed; these are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and are summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm. 1997;44(1):71–83.

    Article  CAS  Google Scholar 

  2. McGhee PCN. An overview of topical ophthalmic drugs and the therapeutics of ocular infection. CNJ McGhee: Ocular Therapeutics

  3. Sharma PK, Banik A, Dixit SJ. A new trend: ocular drug delivery system. Pharma Science Monitor. 2011;2(3):1–25.

  4. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World journal of pharmacology. 2013;2(2):47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article  CAS  PubMed  Google Scholar 

  6. Galloway NR. Common eye diseases and their management. Am J Ophthalmol. 1985;100(2):360.

    Article  Google Scholar 

  7. Ng JS. Ocular anatomy and physiology (2nd ed.). Optometry Vision Sci. 2009;86(10):1208.

    Article  Google Scholar 

  8. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khurana V, Kwatra D, Agrahari V. Recent advances in ocular, drug delivery. Adv Drug Deliv. 2014;(Chapter 19).

  10. Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery; impact of in vitro cell culture models. Journal of ophthalmic & vision research. 2009;4(4):238–52.

    CAS  Google Scholar 

  11. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–617.

    Article  CAS  PubMed  Google Scholar 

  12. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert opinion on drug delivery. 2008;5(5):567–81.

    Article  CAS  PubMed  Google Scholar 

  13. Ghate D, Edelhauser HF. Ocular drug delivery. Expert opinion on drug delivery. 2006;3(2):275–87.

    Article  CAS  PubMed  Google Scholar 

  14. Ruponen M, Urtti A. Undefined role of mucus as a barrier in ocular drug delivery. Eur J Pharm Biopharm. 2015;96:442–6.

    Article  CAS  PubMed  Google Scholar 

  15. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.

    Article  CAS  PubMed  Google Scholar 

  16. Anand BS, Dey S, Mitra AK. Current prodrug strategies via membrane transporters/receptors. Expert Opin Biol Ther. 2002;2(6):607–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  18. du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T. Ocular drug delivery—a look towards nanobioadhesives. Expert opinion on drug delivery. 2011;8(1):71–94.

    Article  PubMed  Google Scholar 

  19. Djebli N, Khier S, Griguer F, Coutant AL, Tavernier A, Fabre G, et al. Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet. 2016.

  20. Siegal PAN. Glaucoma medical therapy: principles and management. 2008.

  21. Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120(9):1778–85.

    Article  PubMed  Google Scholar 

  22. Almeida H, Amaral MH, Lobao P, Lobo JM. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today. 2014;19(4):400–12.

    Article  CAS  PubMed  Google Scholar 

  23. Salazar-Bookaman MM, Wainer I, Patil PN. Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol. 1994;10(1):217–39.

    Article  CAS  PubMed  Google Scholar 

  24. Barot M, Patel M, Kwatra D, Mitra AK. 7 - Transporter–metabolism interplay in the eye. Ocular transporters and receptors. Cambridge: Woodhead Publishing; 2013. p. 229–48.

    Book  Google Scholar 

  25. Dhananjay P, Ramya Krishna V, Aswani Dutt V, Mitra AK. 2 - Biology of ocular transporters: efflux and influx transporters in the eye. Ocular transporters and receptors. Cambridge: Woodhead Publishing; 2013. p. 37–84.

    Book  Google Scholar 

  26. Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol TH. 2001;17(4):393–401.

    Article  CAS  Google Scholar 

  27. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert opinion on drug delivery. 2004;1(1):99–114.

    Article  PubMed  Google Scholar 

  28. Okada AA, Wakabayashi T, Morimura Y, Kawahara S, Kojima E, Asano Y, et al. Trans-Tenon’s retrobulbar triamcinolone infusion for the treatment of uveitis. Br J Ophthalmol. 2003;87(8):968–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson KS, Chu DS. Evaluation of sub-Tenon triamcinolone acetonide injections in the treatment of scleritis. Am J Ophthalmol. 2010;149(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  30. Chang DT, Herceg MC, Bilonick RA, Camejo L, Schuman JS, Noecker RJ. Intracameral dexamethasone reduces inflammation on the first postoperative day after cataract surgery in eyes with and without glaucoma. Clin Ophthalmol. 2009;3:345–55.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mishima S. Clinical pharmacokinetics of the eye. Proctor lecture. Invest Ophthalmol Vis Sci. 1981;21(4):504–41.

    CAS  PubMed  Google Scholar 

  32. Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37(6):435–56.

    Article  CAS  PubMed  Google Scholar 

  33. Benedetti MS, Whomsley R, Poggesi I, Cawello W, Mathy FX, Delporte ML, et al. Drug metabolism and pharmacokinetics. Drug Metab Rev. 2009;41(3):344–90.

    Article  CAS  PubMed  Google Scholar 

  34. Tangri P, Khurana S. Basics of ocular drug delivery systems. Int J Res Pharmaceut Biomed Sci. 2011;2:1541–52.

  35. Katragadda S, Gunda S, Hariharan S, Mitra AK. Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: evaluation of their utility in treating ocular HSV infections. Int J Pharm. 2008;359(1–2):15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin N Am. 2009;23(4):791–815.

    Article  Google Scholar 

  37. Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111–24.

    Article  CAS  PubMed  Google Scholar 

  38. Bartlett JD, Jaanus SD. Clinical ocular pharmacology St. Louis, Mo.: Butterworth-Heinemann/Elsevier. 2008. . Available from: http://www.sciencedirect.com/science/book/9780750675765.

  39. Novack GD, Robin AL. Ocular pharmacology. J Clin Pharmacol. 2016;56(5):517–27.

    Article  CAS  PubMed  Google Scholar 

  40. Vellonen KS, Soini EM, Del Amo EM, Urtti A. Prediction of ocular drug distribution from systemic blood circulation. Mol Pharm. 2015.

  41. Tojo K. A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull. 2004;52(11):1290–4.

    Article  CAS  PubMed  Google Scholar 

  42. Chiou GC. Systemic delivery of polypeptide drugs through ocular route. J Ocul Pharmacol. 1994;10(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  43. Makoid MC, Robinson JR. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J Pharm Sci. 1979;68(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  44. Fauser S, Kalbacher H, Alteheld N, Koizumi K, Krohne TU, Joussen AM. Pharmacokinetics and safety of intravitreally delivered etanercept. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2004;242(7):582–6.

    Article  CAS  PubMed  Google Scholar 

  45. Iyer MN, He F, Wensel TG, Mieler WF, Benz MS, Holz ER. Intravitreal clearance of moxifloxacin. Trans Am Ophthalmol Soc. 2005;103:76–81 .discussion -3

    PubMed  PubMed Central  Google Scholar 

  46. Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh RJ. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007;114(12):2179–82.

    Article  PubMed  Google Scholar 

  47. Ozcimen M, Sakarya Y, Ozcimen S, Goktas S, Sakarya R, Alpfidan I, et al. Pharmacokinetics of intravenously administered tigecycline in eye compartments: an experimental study. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1993–7.

  48. Xu L, Lu T, Tuomi L, Jumbe N, Lu J, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54(3):1616–24.

    Article  CAS  PubMed  Google Scholar 

  49. Gaudreault J, Fei D, Rusit J, Suboc P, Shiu V. Preclinical pharmacokinetics of ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci. 2005;46(2):726–33.

    Article  PubMed  Google Scholar 

  50. Proksch JW, Lowe ER, Ward KW. Ocular pharmacokinetics of mapracorat, a novel, selective glucocorticoid receptor agonist, in rabbits and monkeys. Drug metabolism and disposition: the biological fate of chemicals. 2011;39(7):1181–7.

    Article  CAS  Google Scholar 

  51. Le KN, Gibiansky L, Good J, Davancaze T, van Lookeren CM, Loyet KM, et al. A mechanistic pharmacokinetic/pharmacodynamic model of factor D inhibition in cynomolgus monkeys by lampalizumab for the treatment of geographic atrophy. J Pharmacol Exp Ther. 2015;355(2):288–96.

    CAS  PubMed  Google Scholar 

  52. Drolet DW, Nelson J, Tucker CE, Zack PM, Nixon K, Bolin R, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm Res. 2000;17(12):1503–10.

    Article  CAS  PubMed  Google Scholar 

  53. Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl. 1999;732(1):203–12.

    Article  CAS  PubMed  Google Scholar 

  54. Ng EW, Shima DT, Calias P, Cunningham Jr ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  55. Liu YC, Peng Y, Lwin NC, Wong TT, Venkatraman SS, Mehta JS. Optimization of subconjunctival biodegradable microfilms for sustained drug delivery to the anterior segment in a small animal model. Invest Ophthalmol Vis Sci. 2013;54(4):2607–15.

    Article  CAS  PubMed  Google Scholar 

  56. Di Tommaso C, Bourges JL, Valamanesh F, Trubitsyn G, Torriglia A, Jeanny JC, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm. 2012;81(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  57. Hendrix DV, Stuffle JL, Cox SK. Pharmacokinetics of topically applied ciprofloxacin in equine tears. Vet Ophthalmol. 2007;10(6):344–7.

    Article  CAS  PubMed  Google Scholar 

  58. Proksch JW, Granvil CP, Siou-Mermet R, Comstock TL, Paterno MR, Ward KW. Ocular pharmacokinetics of besifloxacin following topical administration to rabbits, monkeys, and humans. Journal of ocular pharmacology and therapeutics: the official journal of the Association for Ocular. Pharmacol Ther. 2009;25(4):335–44.

    CAS  Google Scholar 

  59. Shen J, Durairaj C, Lin T, Liu Y, Burke J. Ocular pharmacokinetics of intravitreally administered brimonidine and dexamethasone in animal models with and without blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci. 2014;55(2):1056–66.

    Article  CAS  PubMed  Google Scholar 

  60. Kymionis GD, Bouzoukis DI, Diakonis VF, Siganos C. Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol. 2008;2(4):829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mathews D, Mathews J, Jones NP. Low-dose cyclosporine treatment for sight-threatening uveitis: efficacy, toxicity, and tolerance. Indian J Ophthalmol. 2010;58(1):55–8.

  62. Tang-Liu DD, Acheampong A. Ocular pharmacokinetics and safety of ciclosporin, a novel topical treatment for dry eye. Clin Pharmacokinet. 2005;44(3):247–61.

    Article  CAS  PubMed  Google Scholar 

  63. Bucolo C, Melilli B, Piazza C, Zurria M, Drago F. Ocular pharmacokinetics profile of different indomethacin topical formulations. Journal of ocular pharmacology and therapeutics: the official journal of the Association for Ocular. Pharmacol Ther. 2011;27(6):571–6.

    CAS  Google Scholar 

  64. Amar T, Caillaud T, Elena PP. Ocular pharmacokinetic study following single and multiple azithromycin administrations in pigmented rabbits. Curr Eye Res. 2008;33(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  65. Akpek EK, Vittitow J, Verhoeven RS, Brubaker K, Amar T, Powell KD, et al. Ocular surface distribution and pharmacokinetics of a novel ophthalmic 1% azithromycin formulation. Journal of ocular pharmacology and therapeutics: the official journal of the Association for Ocular. Pharmacol Ther. 2009;25(5):433–9.

    CAS  Google Scholar 

  66. Johannesson G, Moya-Ortega MD, Asgrimsdottir GM, Lund SH, Thorsteinsdottir M, Loftsson T, et al. Kinetics of gamma-cyclodextrin nanoparticle suspension eye drops in tear fluid. Acta Ophthalmol. 2014;92(6):550–6.

    Article  CAS  PubMed  Google Scholar 

  67. Amon M, Busin M. Loteprednol etabonate ophthalmic suspension 0.5 %: efficacy and safety for postoperative anti-inflammatory use. Int Ophthalmol. 2012;32(5):507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schopf L, Enlow E, Popov A, Bourassa J, Chen H. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol Ther. 2014.

  69. Kapanigowda UG, Nagaraja SH, Ramaiah B, Boggarapu PR. Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: development and simulation process in Wistar rats. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2015;23(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bakri SJ, Snyder MR, Reid JM, Pulido JS, Singh RJ. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology. 2007;114(5):855–9.

    Article  PubMed  Google Scholar 

  71. Cholkar K, Vadlapudi AD, Trinh HM, Mitra AK. Compositions, formulation, pharmacology, pharmacokinetics, and toxicity of topical, periocular, and intravitreal ophthalmic drugs. In: Gilger CB, editor. Ocular pharmacology and toxicology. Totowa, NJ: Humana Press; 2014. p. 91–118.

    Google Scholar 

  72. Yang Y, Bailey C, Loewenstein A, Massin P. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina. 2015;35(12):2440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Augustin A. Anecortave acetate in the treatment of age-related macular degeneration. Clinical interventions in aging. 2006;1(3):237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Edelhauser HF, Rowe-Rendleman CL, Robinson MR, Dawson DG, Chader GJ, Grossniklaus HE, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–20.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hayden BC, Jockovich ME, Murray TG, Voigt M, Milne P, Kralinger M, et al. Pharmacokinetics of systemic versus focal carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci. 2004;45(10):3644–9.

    Article  PubMed  Google Scholar 

  76. Winter U, Buitrago E, Mena HA, Del Sole MJ, Laurent V, Negrotto S, et al. Pharmacokinetics, safety, and efficacy of Intravitreal digoxin in preclinical models for retinoblastoma. Invest Ophthalmol Vis Sci. 2015;56(8):4382–93.

    Article  CAS  PubMed  Google Scholar 

  77. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–63.

    Article  CAS  PubMed  Google Scholar 

  78. Dey S, Gunda S, Mitra AK. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004;311(1):246–55.

    Article  CAS  PubMed  Google Scholar 

  79. Hariharan S, Gunda S, Mishra GP, Pal D, Mitra AK. Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res. 2009;26(5):1270–82.

    Article  CAS  PubMed  Google Scholar 

  80. Hariharan S, Minocha M, Mishra GP, Pal D, Krishna R, Mitra AK. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol TH. 2009;25(6):487–98.

    Article  CAS  Google Scholar 

  81. Majumdar S, Hingorani T, Srirangam R, Gadepalli RS, Rimoldi JM, Repka MA. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res. 2009;26(5):1261–9.

    Article  CAS  PubMed  Google Scholar 

  82. Anand BS, Katragadda S, Nashed YE, Mitra AK. Amino acid prodrugs of acyclovir as possible antiviral agents against ocular HSV-1 infections: interactions with the neutral and cationic amino acid transporter on the corneal epithelium. Curr Eye Res. 2004;29(2–3):153–66.

    Article  CAS  PubMed  Google Scholar 

  83. Jain-Vakkalagadda B, Pal D, Gunda S, Nashed Y, Ganapathy V, Mitra AK. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm. 2004;1(5):338–46.

    Article  CAS  PubMed  Google Scholar 

  84. Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–202.

    Article  CAS  PubMed  Google Scholar 

  85. Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol TH. 2006;22(6):465–76.

    Article  CAS  Google Scholar 

  86. Majumdar S, Nashed YE, Patel K, Jain R, Itahashi M, Neumann DM, et al. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J Ocul Pharmacol TH. 2005;21(6):463–74.

    Article  CAS  Google Scholar 

  87. Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea. J Ocul Pharmacol TH. 2006;22(2):110–20.

    Article  CAS  Google Scholar 

  88. Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol TH. 2007;23(4):321–34.

    Article  CAS  Google Scholar 

  89. Janoria KG, Boddu SH, Wang Z, Paturi DK, Samanta S, Pal D, et al. Vitreal pharmacokinetics of biotinylated ganciclovir: role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol TH. 2009;25(1):39–49.

    Article  CAS  Google Scholar 

  90. Vadlapudi AD, Vadlapatla RK, Earla R, Sirimulla S, Bailey JB, Pal D, et al. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30(8):2063–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mandal A, Agrahari V, Khurana V, Pal D, Mitra AK. Transporter effects on cell permeability in drug delivery. Expert Opin Drug Deliv. 2016;5:1–17.

    Article  Google Scholar 

  92. Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci. 2015 Oct;104(10):3330-42.

  93. Boddu SH, Gunda S, Earla R, Mitra AK. Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye. Bioanalysis. 2010;2(3):487–507.

    Article  PubMed  Google Scholar 

  94. Del Amo EM, Vellonen KS, Kidron H, Urtti A. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015;95(Pt B):215–26.

Download references

Acknowledgments

This article has been supported by NIH R01EY09171 and R01EY10659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrahari, V., Mandal, A., Agrahari, V. et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. and Transl. Res. 6, 735–754 (2016). https://doi.org/10.1007/s13346-016-0339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0339-2

Keywords

Navigation