Skip to main content

Advertisement

Log in

Focus on genetic and epigenetic events of colorectal cancer pathogenesis: implications for molecular diagnosis

  • Review
  • Published:
Tumor Biology

Abstract

Originally, colorectal cancer (CRC) tumorigenesis was understood as a multistep process that involved accumulation of tumor suppressor genes and oncogenes mutations, such as APC, TP53 and KRAS. However, this assumption proposed a relatively limited repertoire of genetic alterations. In the last decade, there have been major advances in knowledge of multiple molecular pathways involved in CRC pathogenesis, particularly regarding cytogenetic and epigenetic events. Microsatellite instability, chromosomal instability and CpG island methylator phenotype are the most analyzed cytogenetic changes, while DNA methylation, modifications in histone proteins and microRNAs (miRNAs) were analyzed in the field of epigenetic alterations. Therefore, CRC development results from interactions at many levels between genetic and epigenetic amendments. Furthermore, hereditary cancer syndrome and individual or environmental risk factors should not be ignored. The difficulties in this setting are addressed to understand the molecular basis of individual susceptibility to CRC and to determine the roles of genetic and epigenetic alterations, in order to yield more effective prevention strategies in CRC patients and directing their treatment. This review summarizes the most investigated biomolecular pathways involved in CRC pathogenesis, their role as biomarkers for early CRC diagnosis and their possible use to stratify susceptible patients into appropriate screening or surveillance programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics 2012. CA Cancer J Clin. 2012;62(1):10–29.

    PubMed  Google Scholar 

  2. Sengupta N, Gill KA, MacFie TS, Lai CS, Suraweera N, McDonald S, et al. Management of colorectal cancer: a role for genetics in prevention and treatment? Pathol Res Pract. 2008;204(7):469–77.

    PubMed  Google Scholar 

  3. Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011;2011:792362.

    PubMed Central  PubMed  Google Scholar 

  4. Kinzler KW, Vogelstein B. Cancer susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386(6627):761–3.

    CAS  PubMed  Google Scholar 

  5. Karen E. Kim; Early detection and prevention of colorectal cancer. Slack Incorporated 2009.

  6. Deschoolmeester V, Baay M, Specenier P, Lardon F, Vermorken JB. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist. 2010;15(7):699–731.

    PubMed Central  PubMed  Google Scholar 

  7. Kahng LS. Genetic aspects of non-polypoid colorectal neoplasms. Gastrointest Endosc Clin N Am. 2010;20(3):573–8.

    PubMed  Google Scholar 

  8. Pancione M, Remo A, Colantuoni V. Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Pathol Res Int. 2012;2012:509348.

    Google Scholar 

  9. Worthley DL, Leggett BA. Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev. 2010;31(2):31–8.

    PubMed Central  PubMed  Google Scholar 

  10. Costedio M, Church J. Pathways of carcinogenesis are reflected in patterns of polyp pathology in patients screened for colorectal cancer. Dis Colon Rectum. 2011;54(10):1224–8.

    PubMed  Google Scholar 

  11. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    CAS  PubMed  Google Scholar 

  12. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    CAS  PubMed  Google Scholar 

  13. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Huang D, Du X. Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination. World J Gastroenterol. 2008;14(12):1823–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Booth RA. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Lett. 2007;249(1):87–96.

    CAS  PubMed  Google Scholar 

  16. De Roock W, Biesmans B, De Schutter J, Tejpar S. Clinical biomarkers in oncology: focus on colorectal cancer. Mol Diag Ther. 2009;13(2):103–14.

    Google Scholar 

  17. Lievre A, Blons H, Laurent-Puig P. Oncogenic mutations as predictive factors in colorectal cancer. Oncogene. 2010;29(21):3033–43.

    CAS  PubMed  Google Scholar 

  18. Douillard YJ, Oliner KS, Siena S, et al. N Engl J Med. 2013;369(11):1023–34.

    CAS  PubMed  Google Scholar 

  19. Vogelstein B, Fearon ER, Hamilta SR, et al. N Engl J Med. 1988;319:525–32.

    CAS  PubMed  Google Scholar 

  20. Deschoolmeester V, Baay M, Specenier P, Lardon F, Vermorken JB. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist. 2010;15(7):699–731.

    PubMed Central  PubMed  Google Scholar 

  21. Jen J, Kim H, Piantadosi S, et al. N Engl J Med. 1994;331:213–21.

    CAS  PubMed  Google Scholar 

  22. Kanthan R, Senger AL, Kanthan C. Molecular events in primary and metastatic colorectal carcinoma: a review. Pathol Res Int. 2012;2012:597497.

    Google Scholar 

  23. Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2404–60.

    Google Scholar 

  24. Cahill DP, Lengauer C, Yu J, et al. Nature. 1998;392(6673):300–3.

    CAS  PubMed  Google Scholar 

  25. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10(1):13–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.

    CAS  PubMed  Google Scholar 

  27. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2009;31(1):27–36.

    PubMed Central  PubMed  Google Scholar 

  28. Esteller M. Molecular origins of cancer: epigenetics in cancer. N Engl J Med. 2008;358(11):1148–096.

    CAS  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  30. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Iacopetta B, Grieu F, Amanuel B. Microsatellite instability in colorectal cancer. Asia-Pac J Clin Oncol. 2010;6(4):260–9.

    PubMed  Google Scholar 

  33. De la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 2010;28(20):3380–7.

    PubMed Central  PubMed  Google Scholar 

  34. De la Chapelle A. Microsatellite instability. N Engl J Med. 2003;349(3):209–2010.

    PubMed  Google Scholar 

  35. Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D, et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology. 2007;132(1):127–38.

    CAS  PubMed  Google Scholar 

  36. Yim KL. Microsatellite instability in metastatic colorectal cancer: a review of pathology, response to chemotherapy and clinical outcome. Med Oncol. 2012;29(3):1796–801.

    CAS  PubMed  Google Scholar 

  37. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer. Gastroenterology. 2008;135(4):1079–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Yamauchi M, Lochhead P, Morikawa T, Huttenhower C, Chan AT, Giovannucci E, et al. Colorectal cancer: a tale of two sides, or a continuum? Gut. 2012;61(6):794–7.

    PubMed Central  PubMed  Google Scholar 

  39. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    CAS  PubMed  Google Scholar 

  40. Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.

    PubMed Central  PubMed  Google Scholar 

  41. Goel A, Boland CR. Recent insights into the pathogenesis of colorectal cancer. Curr Opin Gastroenterol. 2010;26(1):47–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. de Krijger I, Mekenkamp LJM, Punt CJA, Nagtegaal ID. MicroRNAs in colorectal cancer metastasis. J Pathol. 2011;224:438–47.

    PubMed  Google Scholar 

  43. Yang L, Belaguli N, Berger DH. MicroRNA and colorectal cancer. World J Surg. 2009;33(4):638–46.

    PubMed  Google Scholar 

  44. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    CAS  PubMed  Google Scholar 

  45. Wong JJL, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, de Bruijn DR, Kuiper RP. Geurts van Kessel, A. The epigenetics of (hereditary) colorectal cancer. Cancer Genet Cytogenet. 2010;203(1):1–6.

    CAS  PubMed  Google Scholar 

  47. Kim YS, Deng G. Epigenetic changes (aberrant DNA methylation) in colorectal neoplasia. Gut Liver. 2007;1(1):1–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Ogino S, Hazra A, Tranah GJ, Kirkner GJ, Kawasaki T, Nosho K, et al. MGMT germline polymorphism is associated with somatic MGMT promoter methylation and gene silencing in colorectal cancer. Carcinogenesis. 2007;28(9):1985–90.

    CAS  PubMed  Google Scholar 

  49. Raptis S, Mrkonjic M, Green RC, Pethe VV, Monga N, Chan YM, et al. MLH1-93G > A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst. 2007;99(6):463–74.

    CAS  PubMed  Google Scholar 

  50. Samowitz WS, Curtin K, Wolff RK, Albertsen H, Sweeney C, Caan BJ, et al. The MLH1-93 G > A promoter polymorphism and genetic and epigenetic alterations in colon cancer. Genes Chromosome Cancer. 2008;47(10):835–44.

    CAS  Google Scholar 

  51. Burgess DJ. Gene expression: colorectal cancer classification. Nat Rev Cancer. 2013;13(6):380–1.

    PubMed  Google Scholar 

  52. Sadanandam A, Lyssiotis CA, Homicsko H, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19(5):619–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. De Sosa E, Melo F, Wang X, Jansen M, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19(5):614–8.

    Google Scholar 

  54. Ogino S, Stampfer M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J Natl Cancer Inst. 2010;102(6):365–7.

    PubMed Central  PubMed  Google Scholar 

  55. Ogino S, Chan AT, Fuchs S, Giovannucci E. Molecular Pathologic epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411.

    PubMed Central  PubMed  Google Scholar 

  56. Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS. CpG island methylator phenotype-low (CIMP-Low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 2006;8(5):582–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Hinoue T, Weisenberger JD, Lange CPE, Shen H, Byun HM, van den Berg D, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22(2):271–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A. 2007;104(47):18654–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Issa JP. Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clin Cancer Res. 2003;9(8):2879–81.

    CAS  PubMed  Google Scholar 

  60. Shen L, Catalano PJ, Benson AB, O’Dwyer P, Hamilton SR, Issa JP. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin Cancer Res. 2007;13(20):6093–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Minoo P, Baker K, Goswami R, Chong G, Foulkes WD, Ruszkiewicz AR, et al. Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut. 2006;55(10):1467–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Chirieac LR, Shen L, Catalano PJ, Issa JP, Hamilton SR. Phenotype of microsatellite-stable colorectal carcinomas with CpG island methylation. Am J Surg Pathol. 2005;29:429–36.

    PubMed  Google Scholar 

  63. Snover DC. Update on the serrated pathway to colorectal carcinoma. Hum Pathol. 2011;42:1–10.

    PubMed  Google Scholar 

  64. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Gonzalez CA, Riboli E. Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer. 2010;46:2555–62.

    PubMed  Google Scholar 

  66. Hiraoka S, Kato J, Fujiki S, Kaji E, Morikami T, Nawa T, et al. The presence of large serrated polyps increases risk for colorectal cancer. Gastroenterology. 2010;139:1503–10.

    PubMed  Google Scholar 

  67. Hoffmeister M, Schmitz S, Karmrodt E, Stegmaier C, Haug U, Arndt V, et al. Male sex and smoking have a larger impact on the prevalence of colorectal neoplasia than family history of colorectal cancer. Clin Gastroenterol Hepatol. 2010;8:870–6.

    PubMed  Google Scholar 

  68. Huang L, Wang X, Gong W, Huang Y, Jiang B. The comparison of the clinical manifestations and risk factors of colorectal cancer and adenomas: results from a colonoscopy-based study in southern Chinese. Int J Color Dis. 2010;25:1343–51.

    Google Scholar 

  69. Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer. 2006;119:2657–64.

    CAS  PubMed  Google Scholar 

  70. Bretthauer M. Evidence for colorectal cancer screening. Best Pract Res Clin Gastroenterol. 2010;24:417–25.

    PubMed  Google Scholar 

  71. Schernhammer ES, Giovannucci E, Kawasaki T, Rosner R, Fuchs CS, Ogino S. Dietary folate, alcohol, and B vitamins in relation to line-1 hypomethylation in colon cancer. Gut. 2010;59:794–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Dahm CC, Keogh RH, Spencer EA, Greenwood DC, Key TJ, Fentiman IS, et al. Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries. J Natl Cancer Inst. 2010;102:614–26.

    CAS  PubMed  Google Scholar 

  73. Hildebrand JS, Jacobs EJ, Campbell PT, McCullough ML, Teras LR, Thun MJ, et al. Colorectal cancer incidence and postmenopausal hormone use by type, recency, and duration in cancer prevention study II. Cancer Epidemiol Biomarkers Prev. 2009;18:2835–41.

    CAS  PubMed  Google Scholar 

  74. Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA, Freudenheim JL, et al. Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control. 2010;21:1919–30.

    PubMed Central  PubMed  Google Scholar 

  75. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127:44–51.

    Google Scholar 

  76. Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2007;120(3):656–63.

    CAS  PubMed  Google Scholar 

  77. Satia JA, Keku T, Galanko JA, Martin C, Doctolero RT, Tajima A, et al. Diet, lifestyle, and genomic instability in the North Carolina Colon Cancer Study. Cancer Epidemiol Biomarkers Prev. 2005;14:429–36.

    CAS  PubMed  Google Scholar 

  78. Campbell PT, Jacobs ET, Ulrich CM, Figueiredo JC, Poynter JN, McLaughlin JR, et al. Case-control study of overweight, obesity, and colorectal cancer risk, overall and by tumor microsatellite instability status. J Natl Cancer Inst. 2010;17:391–400.

    Google Scholar 

  79. Kuchiba A, Morikawa T, Yamauchi M, Imamura Y, Liao X, Chan AT, et al. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the nurses’ health study. J Natl Cancer Inst. 2012;104:415–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Morikawa T, Kuchiba A, Lochhead P, Nishihara R, Yamauchi M, Imamura Y, et al. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with b-catenin (CTNNB1) status. Cancer Res. 2013;73(5):1600–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Samowitz WS, Albertsen H, Sweeney C, Herrick J, Caan BJ, Anderson KE, et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst. 2006;98(23):1731–8.

    CAS  PubMed  Google Scholar 

  82. Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 2010;21(102):1012–22.

    Google Scholar 

  83. Nishihara R, Morikawa T, Kuchiba A, Lochhead P, Yamauchi M, Liao X, et al. A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol. 2013;1(178):84–100.

    Google Scholar 

  84. Nishihara R, Lochhead P, Kuchiba A, Jung S, Yamauchi M, Liao X, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013;309(24):2563–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007;356(21):2131–42.

    CAS  PubMed  Google Scholar 

  86. Rizzo A, Pallone F, Monteleone G, Fantini MC. Intestinal inflammation and colorectal cancer: a double-edged sword? World J Gastroenterol. 2011;17:3092–100.

    PubMed Central  PubMed  Google Scholar 

  87. Erreni M, Mantovani A, Allavena P. Tumor-associated macrophages (tam) and inflammation in colorectal cancer. Cancer Microenviron. 2011;4:141–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Mueller MM, Fusenig NE. Friends or foes—Bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.

    CAS  PubMed  Google Scholar 

  89. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990;323:1228–33.

    CAS  PubMed  Google Scholar 

  91. Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, et al. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis. 2007;28(8):1672–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Keku T, Millikan R, Worley K, Winkel S, Eaton A, Biscoco L, et al. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites. Cancer Epidemiol Biomarkers Prev. 2002;11(12):1611–21.

    CAS  PubMed  Google Scholar 

  93. Levine AJ, Siegmund KD, Ervin CM, Diep A, Lee ER, Frankl HD, et al. The methylenetetrahydrofolate reductase 677C → T polymorphism and distal colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2000;9(7):657–63.

    CAS  PubMed  Google Scholar 

  94. Yamaji T, Iwasaki M, Sasazuki S, Sakamoto H, Yoshida T, Tsugane S. Methionine synthase A2756G polymorphism interacts with alcohol and folate intake to influence the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2009;18(1):267–74.

    CAS  PubMed  Google Scholar 

  95. Iacopetta B, Heyworth J, Girschik J, Grieu F, Clayforth C, Fritschi L. The MTHFR C677T and ΔDNMT3B C-149 T polymorphisms confer different risks for right- and left-sided colorectal cancer. Int J Cancer. 2009;125(1):84–90.

    CAS  PubMed  Google Scholar 

  96. Mokarram P, Kumar K, Brim H, Naghibaldhossaini F, Saberi-froozi M, Nouraie M, et al. Distinct high-profile methylated genes in colorectal cancer. PLoS One. 2009;4(9):e7012.

    PubMed Central  PubMed  Google Scholar 

  97. Zeisel SH. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life. 2007;59(6):380–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Van Engeland M, Weijenberg MP, Roemen GMJM, Brink M, De Bruine AP, Goldbohm RA, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 2003;63(12):3133–7.

    PubMed  Google Scholar 

  99. Hamid A, Kiran M, Rana S, Kaur J. Low folate transport across intestinal basolateral surface is associated with down-regulation of reduced folate carrier in in vivo model of folate malabsorption. IUBMB Life. 2009;61(3):236–43.

    CAS  PubMed  Google Scholar 

  100. Paun BC, Kukuruga D, Jin Z, Mori Y, Cheng Y, Duncan M, et al. Relation between normal rectal methylation, smoking status, and the presence or absence of colorectal adenomas. Cancer. 2010;116(19):4495–501.

    PubMed Central  PubMed  Google Scholar 

  101. Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2007;120(3):656–63.

    CAS  PubMed  Google Scholar 

  102. Hughes LAE, van den Brandt PA, de Bruïne AP, Wouters KA, Hulsmans S, Spiertz A, et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One. 2009;4(11):e7951.

    PubMed Central  PubMed  Google Scholar 

  103. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Plaschke J, Engel C, Kruger S, Holinski-Feder E, Pagenstecher C, Mangold E, et al. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic msh6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol. 2004;22:4486–94.

    CAS  PubMed  Google Scholar 

  105. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Järvinen HJ, Aarnio M, Mustonen H, Aktan-Collan K, Aaltonen LA, Peltomäki P, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118:829–34.

    PubMed  Google Scholar 

  107. Burn J. Aspirin prevents cancer in Lynch syndrome. Eur J Cancer. 2009;7:320–1.

    Google Scholar 

  108. Schmeler KM, Lynch HT, Chen LM, Munsell MF, Soliman PT, Clark MB, et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med. 2006;354:261–9.

    CAS  PubMed  Google Scholar 

  109. Juhn E, Khachemoune A. Gardner syndrome: skin manifestations, differential diagnosis and management. Am J Clin Dermatol. 2010;11(2):117–22.

    PubMed  Google Scholar 

  110. Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61:153–61.

    CAS  PubMed  Google Scholar 

  111. McGarrity TJ, Amos C. Peutz–Jeghers syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci. 2006;63(18):2135–44.

    CAS  PubMed  Google Scholar 

  112. Calva D, Howe JR. Hamartomatous polyposis syndromes. Surg Clin N Am. 2008;88(4):779–817.

    PubMed Central  PubMed  Google Scholar 

  113. Kaemmerer E, Klaus C, Jeon MK, Gassler N. Molecular classification of colorectal carcinomas: the genotype to phenotype relation. World J Gastroenterol. 2013;19(45):8163–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–100.

    CAS  PubMed  Google Scholar 

  115. East JE, Saunders BP, Jass JR. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol Clin N Am. 2008;37:25–46.

    Google Scholar 

  116. Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J Gastroenterol. 2014;20(4):923–42.

    PubMed Central  PubMed  Google Scholar 

  117. Winawer S, Fletcher R, Rex D, Bond J, Burt R, Ferrucci J, et al. Colorectal cancer screening and surveillance: clinical guidelines and rationale-update based on new evidence. Gastroenterology. 2003;124(2):544–60.

    PubMed  Google Scholar 

  118. Osborn NK, Ahlquist DA. Stool screening for colorectal cancer: molecular approaches. Gastroenterology. 2005;128(1):192–206.

    CAS  PubMed  Google Scholar 

  119. Hardcastle JD, Thomas WM, Chamberlain J, Pye G, Sheffield J, James PD, et al. Randomised, controlled trial of faecal occult blood screening for colorectal cancer: results for first 107,349 subjects. Lancet. 1989;1(8648):1160–4.

    CAS  PubMed  Google Scholar 

  120. Brenner DE, Rennert G. Fecal DNA biomarkers for the detection of colorectal neoplasia: attractive, but is it feasible? J Natl Cancer Inst. 2005;97(15):1107–9.

    PubMed  Google Scholar 

  121. Creeden J, Junker F, Vogel-Ziebolz S, Rex D. Serum tests for colorectal cancer screening. Mol Diagn Ther. 2011;15(3):129–41.

    PubMed  Google Scholar 

  122. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010;29(1):181–206.

    CAS  PubMed  Google Scholar 

  123. Wong JJL, Hawkins NJ, Ward RL, Hitchins MP. Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Mod Pathol. 2011;24(3):396–411.

    CAS  PubMed  Google Scholar 

  124. Dong SM, Traverso G, Johnson C, et al. Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst. 2001;93:851–65.

    Google Scholar 

  125. Alquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening]by detection of altered human DNA in stool; feasibility of a mutitarget assay panel. Gastroenterology. 2000;119:1219–27.

    Google Scholar 

  126. Calistri D, Rengucci C, Bocchini R, et al. Fecal multiple molecular tests to detect colorectal cancer in stool. Clin Gastroenterol Hepatol. 2003;1:377–83.

    PubMed  Google Scholar 

  127. Roperch JP, Incitti R, Forbin F, et al. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer. 2013;13:566.

    PubMed Central  PubMed  Google Scholar 

  128. Madhavan D, Cuk K, Burwinkel B, Yang R. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 2013;4:116.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Toiyama Y, Takahashi M, Hur K, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105(12):849–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010;29(1):181–206.

    CAS  PubMed  Google Scholar 

  131. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Zoratto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoratto, F., Rossi, L., Verrico, M. et al. Focus on genetic and epigenetic events of colorectal cancer pathogenesis: implications for molecular diagnosis. Tumor Biol. 35, 6195–6206 (2014). https://doi.org/10.1007/s13277-014-1845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1845-9

Keywords

Navigation