Skip to main content

Advertisement

Log in

The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

We aimed to investigate the expression of caveolin-1, -2, -3, and platelet-derived growth factor (PDGF) β receptor in breast cancer cells and stroma by immunohistochemistry and to analyze their implications. The expression rates of stromal caveolin-2 and PDGF β receptor increased as the tumor progressed from ductal carcinoma in situ to microinvasive ductal carcinoma, intraductal component of invasive ductal carcinoma (IDC), and IDC (p < 0.001). The expression loss of caveolin-1 in tumor stroma of IDC correlated with high tumor stage (p < 0.001), high nodal stage (p = 0.011), high cancer stage (p = 0.005), estrogen receptor negativity (p = 0.003), and tumor recurrence (p = 0.003). In addition, the expression loss of caveolin-1 in tumor stroma was correlated with a shorter disease-free survival and an overall survival (p < 0.001). In conclusion, the loss of stromal caveolin-1 is related to poor prognosis in IDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):46–54. doi:10.1038/35094059.

    Article  PubMed  CAS  Google Scholar 

  2. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi:10.1038/nrc1877.

    Article  PubMed  CAS  Google Scholar 

  3. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7. doi:10.1038/nature03096.

    Article  PubMed  CAS  Google Scholar 

  4. Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49. doi:10.1038/nrc1477.

    Article  PubMed  CAS  Google Scholar 

  5. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.

    Article  PubMed  CAS  Google Scholar 

  6. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8. doi:10.1016/j.tig.2008.10.012.

    Article  PubMed  CAS  Google Scholar 

  7. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7. doi:10.1186/bcr2222.

    Article  PubMed  Google Scholar 

  8. Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Minkeu A, et al. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther. 2008;7(8):1212–25.

    Article  PubMed  CAS  Google Scholar 

  9. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250(2):273–83. doi:10.1006/excr.1999.4543.

    Article  PubMed  CAS  Google Scholar 

  10. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114(1):47–62. doi:10.1007/s10549-008-9982-8.

    Article  PubMed  CAS  Google Scholar 

  11. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994;4(7):231–5. doi:10.1016/0962-8924(94)90114-7.

    Article  PubMed  CAS  Google Scholar 

  12. Lisanti MP, Tang Z, Scherer PE, Kubler E, Koleske AJ, Sargiacomo M. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol. 1995;12(1):121–4.

    Article  PubMed  CAS  Google Scholar 

  13. Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, et al. Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol. 2009;174(3):746–61. doi:10.2353/ajpath.2009.080658.

    Article  PubMed  CAS  Google Scholar 

  14. Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174(6):2023–34. doi:10.2353/ajpath.2009.080873.

    Article  PubMed  CAS  Google Scholar 

  15. Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009;174(6):2035–43. doi:10.2353/ajpath.2009.080924.

    Article  PubMed  CAS  Google Scholar 

  16. Witkiewicz AK, Dasgupta A, Nguyen KH, Liu C, Kovatich AJ, Schwartz GF, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8(11):1071–9.

    Article  PubMed  CAS  Google Scholar 

  17. Paulsson J, Sjoblom T, Micke P, Ponten F, Landberg G, Heldin CH, et al. Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009;175(1):334–41. doi:10.2353/ajpath.2009.081030.

    Article  PubMed  Google Scholar 

  18. Witkiewicz AK, Casimiro MC, Dasgupta A, Mercier I, Wang C, Bonuccelli G, et al. Towards a new “stromal-based” classification system for human breast cancer prognosis and therapy. Cell Cycle. 2009;8(11):1654–8.

    Article  PubMed  CAS  Google Scholar 

  19. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9(16):3256–76. doi:10.4161/cc.9.16.12553.

    Article  PubMed  CAS  Google Scholar 

  21. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010;9(11):2201–19.

    Article  CAS  Google Scholar 

  22. Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal–epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9(12):2423–33.

    Article  PubMed  CAS  Google Scholar 

  24. Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, et al. Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer. 2008;99(2):327–34. doi:10.1038/sj.bjc.6604463.

    Article  PubMed  CAS  Google Scholar 

  25. Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat. 2006;99(1):85–90. doi:10.1007/s10549-006-9184-1.

    Article  PubMed  CAS  Google Scholar 

  26. Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res. 2007;13(1):90–101. doi:10.1158/1078-0432.CCR-06-1371.

    Article  PubMed  CAS  Google Scholar 

  27. Peterson TE, Guicciardi ME, Gulati R, Kleppe LS, Mueske CS, Mookadam M, et al. Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol. 2003;23(9):1521–7. doi:10.1161/01.atv.0000081743.35125.05.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto M, Toya Y, Jensen RA, Ishikawa Y. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp Cell Res. 1999;247(2):380–8. doi:10.1006/excr.1998.4379.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Woo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, J.S., Park, S., Kim, S.I. et al. The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumor Biol. 32, 787–799 (2011). https://doi.org/10.1007/s13277-011-0181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0181-6

Keywords

Navigation