Skip to main content
Log in

Dermokosmetika für „Anti-Aging“

Dermo-cosmetics for anti-aging

  • Leitthema
  • Published:
Journal für Ästhetische Chirurgie Aims and scope

Zusammenfassung

Effektive Anti-Aging-Wirkstoffe können nur dann entwickelt werden, wenn der Alterungsprozess vollständig verstanden ist. Da dies bis heute noch nicht vollständig der Fall ist, sind derzeit nur solche Wirkstoffe verfügbar, die in bereits verstandene Teilbereiche des Alterungsprozesses eingreifen können. Der Beitrag umreißt die wesentlichen heute bekannten Anti-Aging-Strategien und erläutert, basierend darauf, neue und innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika.

Abstract

Effective anti-aging agents can only be developed when the aging process is completely understood. As this is not yet completely the case, only such agents are currently available, which can intervene in already understood partial areas of the aging process. This article outlines the essential anti-aging strategies known today and based on this describes new and innovative concepts for the development of anti-aging dermo-cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Köckritz A (2011) Flüsse aus Quecksilber. Die Zeit. 11(26): S. 3

  2. da Costa JP et al (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112

    Article  PubMed  Google Scholar 

  3. Hasworth SB, Cannon ML (2015) Social theories of aging: a review. Dis Mon 61(11):475–479

    Article  PubMed  Google Scholar 

  4. Avantaggiato A et al (2015) The theories of aging: reactive oxygen species and what else? J Biol Regul Homeost Agents 29(3 Suppl 1):156–163

    CAS  PubMed  Google Scholar 

  5. Lipsky MS, King M (2015) Biological theories of aging. Dis Mon 61(11):460–466

    Article  PubMed  Google Scholar 

  6. Libertini G (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci 8(1):56–68

    Article  PubMed  Google Scholar 

  7. Goldsmith TC (2015) Is the evolutionary programmed/ non-programmed aging argument moot? Curr Aging Sci 8(1):41–45

    Article  PubMed  Google Scholar 

  8. Aledo JC, Blanco JM (2015) Aging is neither a failure nor an achievement of natural selection. Curr Aging Sci 8(1):4–10

    Article  PubMed  Google Scholar 

  9. Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17(1):205–220

    Article  CAS  PubMed  Google Scholar 

  10. Sergiev PV, Dontsova OA, Berezkin GV (2015) Theories of aging: an ever-evolving field. Acta Naturae 7(1):9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Piotrowska A, Bartnik E (2014) The role of reactive oxygen species and mitochondria in aging. Postepy Biochem 60(2):240–247

    CAS  PubMed  Google Scholar 

  12. Sikora E (2014) Aging and longevity. Postepy Biochem 60(2):125–137

    PubMed  Google Scholar 

  13. Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207

    Article  CAS  PubMed  Google Scholar 

  14. Fulop T et al (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176

    Article  PubMed  Google Scholar 

  15. Zs-Nagy I (2014) Aging of cell membranes: facts and theories. Interdiscip Top Gerontol 39:62–85

    Article  PubMed  Google Scholar 

  16. Le Bourg E (2014) Evolutionary theories of aging can explain why we age. Interdiscip Top Gerontol 39:8–23

    Article  PubMed  Google Scholar 

  17. Park DC, Yeo SG (2013) Aging. Korean J Audiol 17(2):39–44

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moskalev AA et al (2014) Genetics and epigenetics of aging and longevity. Cell Cycle 13(7):1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356

    CAS  PubMed  Google Scholar 

  20. Mao L, Franke J (2013) Hormesis in aging and neurodegeneration-a prodigy awaiting dissection. Int J Mol Sci 14(7):13109–13128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xi H et al (2013) Telomere, aging and age-related diseases. Aging Clin Exp Res 25(2):139–146

    Article  PubMed  Google Scholar 

  22. Gkogkolou P, Bohm M (2012) Advanced glycation end products: key players in skin aging? Dermatoendocrinol 4(3):259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naito AT, Komuro I (2013) Chronic inflammation and organismal aging. Clin Calcium 23(1):51–58

    CAS  PubMed  Google Scholar 

  24. Madden CL, Cloyes KG (2012) The discourse of aging. ANS Adv Nurs Sci 35(3):264–272

    Article  PubMed  Google Scholar 

  25. Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13(73):451–460

    PubMed  Google Scholar 

  26. Cefalu CA (2011) Theories and mechanisms of aging. Clin Geriatr Med 27(4):491–506

    Article  PubMed  Google Scholar 

  27. Weinert BT, Timiras PS (1985) Invited review: theories of aging. J Appl Physiol 95(4):1706–1716

    Article  Google Scholar 

  28. Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65(3):375–398

    Article  CAS  PubMed  Google Scholar 

  29. Huber J, Buchacher R (2007) Das Ende des Alterns: Bahnbrechende medizinische Möglichkeiten der Verjüngung. Ullstein, Berlin

    Google Scholar 

  30. Stipp D (2010) The youth pill: scientists at the brink of an anti-aging revolution. Penguin Group, Current

    Google Scholar 

  31. Flatt T (2012) A new definition of aging? Front Genet 3:148

    Article  PubMed  PubMed Central  Google Scholar 

  32. Busse EW (1969) One medical school’s approach to teaching problems of the aging. J Am Geriatr Soc 17(3):299–314

    Article  CAS  PubMed  Google Scholar 

  33. Anstey K, Stankov L, Lord S (1993) Primary aging, secondary aging, and intelligence. Psychol Aging 8(4):562–570

    Article  CAS  PubMed  Google Scholar 

  34. Robinson LJ et al (2003) Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. J Proteome Res 2(5):556–557

    Article  CAS  PubMed  Google Scholar 

  35. Brown WT (1992) Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 55(6 Suppl):S1222–S1224

    Google Scholar 

  36. Brown WT, Zebrower M, Kieras FJ (1985) Progeria, a model disease for the study of accelerated aging. Basic Life Sci 35:375–396

    CAS  PubMed  Google Scholar 

  37. Blancquaert A (1959) Progeria & progeria-like disease. Maandschr Kindergeneeskd 27(5):157–171

    CAS  PubMed  Google Scholar 

  38. Paglia DE, Walford RL (2005) Atypical hematological response to combined calorie restriction and chronic hypoxia in Biosphere 2 crew: a possible link to latent features of hibernation capacity. Habitation (Elmsford) 10(2):79–85

    Article  Google Scholar 

  39. Walford RL et al (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–24

    Article  PubMed  Google Scholar 

  40. Walford RL et al (1999) Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(2 Suppl):61–65

    CAS  PubMed  Google Scholar 

  41. Al-Regaiey KA (2016) The effects of calorie restriction on aging: a brief review. Eur Rev Med Pharmacol Sci 20(11):2468–2473

    CAS  PubMed  Google Scholar 

  42. Zhang N et al (2016) Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling. Cell Cycle 15(7):1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salvatore MF et al (2016) Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine. Neurobiol Aging 37:192–207

    Article  CAS  PubMed  Google Scholar 

  44. Trubitsyn AG (2015) The lag of the proliferative aging clock underlies the lifespan-extending effect of calorie restriction. Curr Aging Sci 8(3):220–226

    Article  PubMed  Google Scholar 

  45. Karunadharma PP et al (2015) Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell 14(4):547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu C et al (2015) Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissues. Diabetes 64(5):1576–1590

    Article  CAS  PubMed  Google Scholar 

  47. Kim DH et al (2015) The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 16(1):1–14

    Article  PubMed  CAS  Google Scholar 

  48. Kim DH et al (2014) The essential role of FoxO6 phosphorylation in aging and calorie restriction. Age (Dordr) 36(4):9679

    Article  CAS  Google Scholar 

  49. Michan S (2014) Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging. Front Biosci (Landmark Ed) 19:1300–1319

    Article  Google Scholar 

  50. Testa G et al (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20(18):2950–2977

    Article  CAS  PubMed  Google Scholar 

  51. Yamada Y et al (2013) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48(11):1226–1235

    Article  PubMed  Google Scholar 

  52. Yan L et al (2013) Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. Age (Dordr) 35(6):2177–2182

    Article  Google Scholar 

  53. Chung KW et al (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48(10):1049–1053

    Article  CAS  PubMed  Google Scholar 

  54. Drewnowski A et al (1996) Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc 96(7):663–669

    Article  CAS  PubMed  Google Scholar 

  55. Burr ML (1995) Explaining the French paradox. J R Soc Health 115(4):217–219

    Article  CAS  PubMed  Google Scholar 

  56. Renaud S, de Lorgeril M (1993) The French paradox: dietary factors and cigarette smoking-related health risks. Ann N Y Acad Sci 686:299–309

    Article  CAS  PubMed  Google Scholar 

  57. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Article  CAS  PubMed  Google Scholar 

  58. Richard JL (1987) Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss 80(Spec No):17–21

    PubMed  Google Scholar 

  59. Yang X, Li X, Ren J (2014) From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med Chem 14(6):806–825

    Article  CAS  PubMed  Google Scholar 

  60. Goldfinger TM (2003) Beyond the French paradox: the impact of moderate beverage alcohol and wine consumption in the prevention of cardiovascular disease. Cardiol Clin 21(3):449–457

    Article  PubMed  Google Scholar 

  61. Yarnell JW, Evans AE (2000) The Mediterranean diet revisited–towards resolving the (French) paradox. QJM 93(12):783–785

    Article  CAS  PubMed  Google Scholar 

  62. Renaud S, Gueguen R (1998) The French paradox and wine drinking. Novartis Found Symp 216:208–217 (discussion 217–22, 152–8)

    CAS  PubMed  Google Scholar 

  63. Kapoor VK, Dureja J, Chadha R (2009) Synthetic drugs with anti-ageing effects. Drug Discov Today 14(17–18):899–904

    Article  CAS  PubMed  Google Scholar 

  64. Harman D (1982) Nutritional implications of the free-radical theory of aging. J Am Coll Nutr 1(1):27–34

    Article  CAS  PubMed  Google Scholar 

  65. Harman D (1988) Free radicals in aging. Mol Cell Biochem 84(2):155–161

    Article  CAS  PubMed  Google Scholar 

  66. Harman D (1991) The aging process: major risk factor for disease and death. Proc Natl Acad Sci U S A 88(12):5360–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harman D (1992) Free radical theory of aging. Mutat Res 275(3–6):257–266

    Article  CAS  PubMed  Google Scholar 

  68. Harman D (1992) Free radical theory of aging: history. EXS 62:1–10

    CAS  PubMed  Google Scholar 

  69. Harman D (1993) Free radical involvement in aging. Pathophysiology and therapeutic implications. Drugs Aging 3(1):60–80

    Article  CAS  PubMed  Google Scholar 

  70. Harman D (1994) Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci 717:1–15

    Article  CAS  PubMed  Google Scholar 

  71. Harman D (1998) Extending functional life span. Exp Gerontol 33(1–2):95–112

    Article  CAS  PubMed  Google Scholar 

  72. Harman D (1998) Aging and oxidative stress. J Int Fed Clin Chem 10(1):24–27

    CAS  PubMed  Google Scholar 

  73. Harman D (2000) Alzheimer’s disease: a hypothesis on pathogenesis. J Am Aging Assoc 23(3):147–161

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Harman D (2000) Antioxidant supplements: effects on disease and aging in the United States population. J Am Aging Assoc 23(1):25–31

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Harman D (2001) Aging: overview. Ann N Y Acad Sci 928:1–21

    Article  CAS  PubMed  Google Scholar 

  76. Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561

    Article  CAS  PubMed  Google Scholar 

  77. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    Article  CAS  PubMed  Google Scholar 

  78. Harman D (2009) About “Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10(6):783

    Article  PubMed  Google Scholar 

  79. Lichtenstein AH, Russell RM (2005) Essential nutrients: food or supplements? Where should the emphasis be? JAMA 294(3):351–358

    Article  CAS  PubMed  Google Scholar 

  80. Murphy SP et al (2007) Multivitamin-multimineral supplements’ effect on total nutrient intake. Am J Clin Nutr 85(1):280–284

    Google Scholar 

  81. Penniston KL, Tanumihardjo SA (2003) Vitamin A in dietary supplements and fortified foods: too much of a good thing? J Am Diet Assoc 103(9):1185–1187

    Article  PubMed  Google Scholar 

  82. Tomada I, Andrade JP (2015) Science based anti-ageing nutritional recommendations (Chapter 11). In: Neves D (Hrsg) Anti-ageing nutrients: evidence-based prevention of age-associated diseases. Wiley, Hoboken, S 365–390

    Google Scholar 

  83. Diamanti-Kandarakis E et al (2017) MECHANISMS IN ENDOCRINOLOGY: Aging and anti-aging: a Combo-Endocrinology overview. Eur J Endocrinol 176(6):R283–R308

    Article  CAS  PubMed  Google Scholar 

  84. Morley JE (2013) Scientific overview of hormone treatment used for rejuvenation. Fertil Steril 99(7):1807–1813

    Article  CAS  PubMed  Google Scholar 

  85. Zdanys KF, Steffens DC (2015) Sleep disturbances in the elderly. Psychiatr Clin North Am 38(4):723–741

    Article  PubMed  Google Scholar 

  86. Duffy JF, Zitting KM, Chinoy ED (2015) Aging and circadian rhythms. Sleep Med Clin 10(4):423–434

    Article  PubMed  PubMed Central  Google Scholar 

  87. Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  88. Ramis MR et al (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem 22(22):2690–2711

    Article  CAS  PubMed  Google Scholar 

  89. Ramis MR et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41

    Article  PubMed  CAS  Google Scholar 

  90. Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903

    Article  CAS  PubMed  Google Scholar 

  91. Jenwitheesuk A et al (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15(9):16848–16884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sadowska-Bartosz I, Bartosz G (2014) Effect of antioxidants supplementation on aging and longevity. Biomed Res Int 2014:404680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mayo JC et al (2017) Melatonin and sirtuins: A “not-so unexpected” relationship. J Pineal Res 62(2). doi:10.1111/jpi.12391

  94. Reiter RJ et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329

    Article  CAS  PubMed  Google Scholar 

  95. Tanaka Y et al (1999) Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 376(1–2):17–22

    Article  CAS  PubMed  Google Scholar 

  96. Ouslimani N et al (2007) Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1. Metabolism 56(3):308–313

    Article  CAS  PubMed  Google Scholar 

  97. Beisswenger P, Ruggiero-Lopez D (2003) Metformin inhibition of glycation processes. Diabetes Metab 29(4 Pt 2):6S95–6103

    CAS  PubMed  Google Scholar 

  98. Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390

    CAS  PubMed  Google Scholar 

  99. Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Invest Clin 68(1):7–16

    PubMed  Google Scholar 

  100. Lopez-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Santos J et al (2016) Dietary restriction and nutrient balance in aging. Oxid Med Cell Longev 2016:4010357

    PubMed  Google Scholar 

  102. Pavicic T et al (2017) Dermokosmetika gegen Hautalterung – Leitlinie der GD Gesellschaft für Dermopharmazie e. V. http://www.gd-online.de. Zugegriffen: 12.06.2017

    Google Scholar 

  103. Ramos-e-Silva M et al (2013) Anti-aging cosmetics: facts and controversies. Clin Dermatol 31(6):750–758

    Article  PubMed  Google Scholar 

  104. Trommer H, Böttcher R, Neubert RHH (2002) Ascorbinsäure – Ein Vitamin wie Dr. Jekyll und Mr. Hyde. PZ-Pharmazeutische Zeitung – online, 2002. 48. http://www.pharmazeutische-zeitung.de/index.php?id=24758. Zugegriffen: 25.07.2017

  105. Richelle M, Steiling H, Castiel I (2009) Bioavaialability and skin bioafficacy of Vitamin C and E. In: Tabor A, Blair RM (Hrsg) Nutritional cosmetics: beauty from within. Elsevier, William Andrew, Amsterdam, S 113–138

    Google Scholar 

  106. Leveque N et al (2002) Decrease in skin ascorbic acid concentration with age. Eur J Dermatol 12(4):XXI–XXII

    CAS  PubMed  Google Scholar 

  107. Passi S et al (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36(4):471–477

    Article  CAS  PubMed  Google Scholar 

  108. Vidlarova L et al (2016) Nanocrystals for dermal penetration enhancement – effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 104:216–225

    Article  CAS  PubMed  Google Scholar 

  109. Romero GB et al (2015) Industrial concentrates of dermal hesperidin smartCrystals(R)–production, characterization & long-term stability. Int J Pharm 482(1–2):54–60

    Article  CAS  PubMed  Google Scholar 

  110. Al Shaal L, Müller RH, Shegokar R (2010) smartCrystal combination technology–scale up from lab to pilot scale and long term stability. Pharmazie 65(12):877–884

    PubMed  Google Scholar 

  111. Keck CM, Müller RH (2008) Nanodiamanten – Erhöhte Bioaktivität. Labor More 1:64–65

  112. Keck CM, Chen R, Müller RH (2013) SmartCrystals for consumer care & cosmetics: enhanced dermal delivery of poorly soluble plant actives. Househ Pers Care Today 8(5):18–24

    Google Scholar 

  113. Ganceviciene R et al (2012) Skin anti-aging strategies. Dermatoendocrinol 4(3):308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sparavigna A, Tenconi B, De Ponti I (2015) Antiaging, photoprotective, and brightening activity in biorevitalization: a new solution for aging skin. Clin Cosmet Investig Dermatol 8:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zastrow L, Lademann J (2016) Light – instead of UV protection: new requirements for skin cancer prevention. Anticancer Res 36(3):1389–1393

    CAS  PubMed  Google Scholar 

  116. Darvin ME et al (2010) Radical production by infrared A irradiation in human tissue. Skin Pharmacol Physiol 23(1):40–46

    Article  CAS  PubMed  Google Scholar 

  117. Darvin ME et al (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130(2):629–631

    Article  CAS  PubMed  Google Scholar 

  118. Zastrow L et al (2009) UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin? Hautarzt 60(4):310–317

    Article  CAS  PubMed  Google Scholar 

  119. Zastrow L et al (2009) The missing link–light-induced (280-1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22(1):31–44

    Article  CAS  PubMed  Google Scholar 

  120. Puri P et al (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423

    Article  PubMed  Google Scholar 

  121. Krutmann J et al (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161

    Article  PubMed  Google Scholar 

  122. Kim KE, Cho D, Park HJ (2016) Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 152:126–134

    Article  CAS  PubMed  Google Scholar 

  123. Krutmann J et al (2016) Environmentally induced (extrinsic) skin aging. Hautarzt 67(2):99–102

    Article  CAS  PubMed  Google Scholar 

  124. Li M et al (2015) Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women. J Dermatol Sci 79(2):148–154

    Article  CAS  PubMed  Google Scholar 

  125. Pan TL et al (2015) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1):51–60

    Article  CAS  PubMed  Google Scholar 

  126. Hsu S (2015) Compounds derived from Epigallocatechin-3-Gallate (EGCG) as a novel approach to the prevention of viral infections. Inflamm Allergy Drug Targets 14(1):13–18

    Article  CAS  PubMed  Google Scholar 

  127. Kong HH, Segre JA (2017) The molecular revolution in cutaneous biology: investigating the skin microbiome. J Invest Dermatol 137(5):e119–e122

    Article  CAS  PubMed  Google Scholar 

  128. Kirker KR, James GA (2017) In vitro studies evaluating the effects of biofilms on wound-healing cells: a review. APMIS 125(4):344–352

    Article  PubMed  Google Scholar 

  129. Igawa S, Di Nardo A (2017) Skin microbiome and mast cells. Transl Res 184:68–76

    Article  PubMed  Google Scholar 

  130. Dreno B et al (2016) Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 30(12):2038–2047

    Article  CAS  PubMed  Google Scholar 

  131. Holmes AD, Steinhoff M (2016) Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol. doi:10.1111/exd.13143

    PubMed  Google Scholar 

  132. Cundell AM (2016) Microbial ecology of the human skin. Microb Ecol. doi:10.1007/s00248-016-0789-6

    PubMed  Google Scholar 

  133. Egert M, Simmering R (2016) The microbiota of the human skin. Adv Exp Med Biol 902:61–81

    Article  PubMed  Google Scholar 

  134. Fyhrquist N et al (2016) Skin biomes. Curr Allergy Asthma Rep 16(5):40

    Article  CAS  PubMed  Google Scholar 

  135. Zealley B, de Grey AD (2013) Strategies for engineered negligible senescence. Gerontology 59(2):183–189

    Article  PubMed  Google Scholar 

  136. Kaushik G, Leijten J, Khademhosseini A (2017) Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 35(1):51–60

    Article  PubMed  Google Scholar 

  137. Husain SR, Ohya Y, Puri RK (2017) Current status and challenges of three-dimensional modeling and printing of tissues and organs. Tissue Eng Part A 23(11–12):471–473

    Article  PubMed  Google Scholar 

  138. Jakus AE, Rutz AL, Shah RN (2016) Advancing the field of 3D biomaterial printing. Biomed Mater 11(1):014102

    Article  PubMed  CAS  Google Scholar 

  139. Yu B et al (2016) An elastic second skin. Nat Mater 15(8):911–918

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Keck.

Ethics declarations

Interessenkonflikt

C.M. Keck gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keck, C.M. Dermokosmetika für „Anti-Aging“. J Ästhet Chir 10, 101–110 (2017). https://doi.org/10.1007/s12631-017-0091-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12631-017-0091-6

Schlüsselwörter

Keywords

Navigation