Skip to main content
Log in

Imaging Myeloperoxidase Activity in Cardiovascular Disease

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Inflammation and oxidative stress play central roles in the pathogenesis of atherosclerosis and outcomes such as myocardial infarction and stroke. The enzyme myeloperoxidase (MPO) is secreted by activated leukocytes in atherosclerotic plaques and generates several pro-oxidative species that participate in biological activities that promote plaque destabilization and rupture; the catastrophic event that defines which plaques are benign and which are life-threatening. Serum MPO levels are also highly predictive of downstream cardiovascular events and patient outcome. Recently, several molecular imaging probes sensitive to the presence of MPO activity have been developed. Here we review the design and application of probes developed for MRI, single photon emission CT, and fluorescence and bioluminescence imaging. Continued development of these probes may one day allow detection of plaques prior to plaque rupture, yielding significant diagnostic and prognostic improvements and ultimately allowing proper staging and treatment of high-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hackam DG, Anand SS: Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 2003, 290(7):932–940.

    Article  PubMed  Google Scholar 

  2. Lusis AJ: Atherosclerosis. Nature 2000, 407(6801):233–241.

    Article  CAS  PubMed  Google Scholar 

  3. Libby P, Aikawa M: Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 2002, 8(11):1257–1262.

    Article  CAS  PubMed  Google Scholar 

  4. Casscells W, Naghavi M, Willerson JT: Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 2003, 107(16):2072–2075.

    Article  PubMed  Google Scholar 

  5. Falk E: Why do plaques rupture? Circulation 1992, 86(6 Suppl):III30–42.

    CAS  PubMed  Google Scholar 

  6. Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003, 108(15):1772–1778.

    Article  PubMed  Google Scholar 

  7. Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003, 108(14):1664–1672.

    Article  PubMed  Google Scholar 

  8. Fuster V, Moreno PR, Fayad ZA, et al.: Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005, 46(6):937–954.

    Article  PubMed  Google Scholar 

  9. Geng Y-J, Libby P: Progression of atheroma: a struggle between death and procreation. Arteriosclerosis, Thrombosis, and Vascular Biology 2002, 22(9):1370–1380.

    Article  CAS  PubMed  Google Scholar 

  10. Moreno PR, Purushothaman KR, Fuster V, et al.: Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 2004, 110(14):2032–2038.

    Article  PubMed  Google Scholar 

  11. Galis ZS, Sukhova GK, Lark MW, Libby P: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994, 94(6):2493–2503.

    Article  CAS  PubMed  Google Scholar 

  12. Nicholls SJ, Hazen SL: Myeloperoxidase and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2005, 25(6):1102–1111.

    Article  CAS  PubMed  Google Scholar 

  13. Klebanoff SJ: Myeloperoxidase: friend and foe. J Leukoc Biol 2005, 77(5):598–625.

    Article  CAS  PubMed  Google Scholar 

  14. Schultz J, Kaminker K: Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys 1962, 96:465–467.

    Article  CAS  Google Scholar 

  15. Bos A, Wever R, Roos D: Characterization and quantification of the peroxidase in human monocytes. Biochim Biophys Acta 1978, 525(1):37–44.

    CAS  PubMed  Google Scholar 

  16. Daugherty A, Dunn JL, Rateri DL, Heinecke JW: Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994, 94(1):437–444.

    Article  CAS  PubMed  Google Scholar 

  17. Sugiyama S, Okada Y, Sukhova GK, et al.: Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 2001, 158(3):879–891.

    CAS  PubMed  Google Scholar 

  18. Hazen SL, Zhang R, Shen Z, et al.: Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation In vivo. Circ Res 1999, 85(10):950–958.

    CAS  PubMed  Google Scholar 

  19. Nicholls SJ, Zheng L, Hazen SL: Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med 2005, 15(6):212–219.

    Article  CAS  PubMed  Google Scholar 

  20. Nicholls SJ, Hazen SL: Myeloperoxidase, modified lipoproteins, and atherogenesis. J Lipid Res 2009, 50 Suppl:S346–351.

    Article  PubMed  Google Scholar 

  21. • Tavora FR, Ripple M, Li L, Burke AP: Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009, 9:27. This article clearly shows that MPO is expressed in plaques with histological characteristics of vulnerable plaques (thin-cap atheroma), and absent from more stable plaques (fibroatheroma). It also demonstrates that thrombi associated with disrupted plaques contain appreciable numbers of MPO-positive cells.

    Article  PubMed  Google Scholar 

  22. Marsche G, Hammer A, Oskolkova O, et al.: Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type I, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem 2002, 277(35):32172–32179.

    Article  CAS  PubMed  Google Scholar 

  23. Hazell LJ, Arnold L, Flowers D, et al.: Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 1996, 97(6):1535–1544.

    Article  CAS  PubMed  Google Scholar 

  24. Hazen SL, Heinecke JW: 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997, 99(9):2075–2081.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Nicholls SJ, Rodriguez ER, et al.: Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 2007, 13(10):1176–1184.

    Article  CAS  PubMed  Google Scholar 

  26. Eiserich JP, Baldus S, Brennan M-L, et al.: Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002, 296(5577):2391–2394.

    Article  CAS  PubMed  Google Scholar 

  27. Sugiyama S, Kugiyama K, Aikawa M, et al.: Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 2004, 24(7):1309–1314.

    Article  CAS  PubMed  Google Scholar 

  28. Fu X, Kassim SY, Parks WC, Heinecke JW: Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001, 276(44):41279–41287.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang R, Brennan ML, Fu X, et al.: Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001, 286(17):2136–2142.

    Article  CAS  PubMed  Google Scholar 

  30. Brennan M-L, Penn MS, Van Lente F, et al.: Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003, 349(17):1595–1604.

    Article  CAS  PubMed  Google Scholar 

  31. • Meuwese MC, Stroes ESG, Hazen SL, et al.: Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 2007, 50(2):159–165. This article shows that elevated MPO serum levels are predictive of future risk of CAD during an 8-year follow-up in apparently healthy individuals. This suggests that inflammatory activation, as detected by MPO secretion, precedes CAD onset by many years.

    Article  CAS  PubMed  Google Scholar 

  32. Wong ND, Gransar H, Narula J, et al.: Myeloperoxidase, subclinical atherosclerosis, and cardiovascular disease events. JACC Cardiovasc Imaging 2009, 2(9):1093–1099.

    Article  PubMed  Google Scholar 

  33. Touzé E, Toussaint J-F, Coste J, et al.: Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components: consequences for prognosis studies and therapeutic trials. Stroke 2007, 38(6):1812–1819.

    Article  PubMed  Google Scholar 

  34. Bogdanov A, Matuszewski L, Bremer C, et al.: Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 2002, 1(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  35. Chen JW, Pham W, Weissleder R, Bogdanov A: Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 2004, 52(5):1021–1028.

    Article  CAS  PubMed  Google Scholar 

  36. Dunford HB, Hsuanyu Y: Kinetics of oxidation of serotonin by myeloperoxidase compounds I and II. Biochem Cell Biol 1999, 77(5):449–457.

    Article  CAS  PubMed  Google Scholar 

  37. Querol M, Chen JW, Bogdanov AA: A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem 2006, 4(10):1887–1895.

    Article  CAS  PubMed  Google Scholar 

  38. Querol M, Chen JW, Weissleder R, Bogdanov A: DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org Lett 2005, 7(9):1719–1722.

    Article  CAS  PubMed  Google Scholar 

  39. • Rodríguez E, Nilges M, Weissleder R, Chen JW: Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity. J Am Chem Soc 2010, 132(1):168–177. This study details the mechanisms of activation, specificity, stability, and cytotoxicity characteristics of several MRI MPO probes, including MPO-Gd.

    Article  PubMed  Google Scholar 

  40. Chen JW, Querol Sans M, Bogdanov A, Weissleder R: Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 2006, 240(2):473–481.

    Article  PubMed  Google Scholar 

  41. •• Nahrendorf M, Sosnovik D, Chen JW, et al.: Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008, 117(9):1153–1160. This is the first study showing the ability to image MPO activity using the MRI probe MPO-Gd in a mouse model of cardiovascular disease (myocardial ischemia-reperfusion injury). Furthermore, the anti-inflammatory effects of atorvastatin treatment were successfully tracked.

    Article  CAS  PubMed  Google Scholar 

  42. Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R: Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 2008, 131(Pt 4):1123–1133.

    Article  PubMed  Google Scholar 

  43. •• Breckwoldt MO, Chen JW, Stangenberg L, et al.: Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA 2008, 105(47):18584–18589. This study showed that MPO-Gd can be used to track the temporal changes in inflammatory response and oxidative stress in a mouse model of stroke.

    Article  CAS  PubMed  Google Scholar 

  44. •• Ronald JA, Chen JW, Chen Y, et al.: Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 2009, 120(7):592–599. This is currently the only study showing the ability to noninvasively detect MPO activity in an animal model of atherosclerosis in vivo. It required the combined use of a rabbit model of atherosclerosis, high-resolution MRI, and the activatable MRI probe, MPO-Gd.

    Article  CAS  PubMed  Google Scholar 

  45. Brennan ML, Anderson MM, Shih DM, et al.: Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 2001, 107(4):419–430.

    Article  CAS  PubMed  Google Scholar 

  46. Querol Sans M, Chen JW, Weissleder R, Bogdanov AA: Myeloperoxidase activity imaging using (67)Ga labeled substrate. Mol Imaging Biol 2005, 7(6):403–410.

    Article  PubMed  Google Scholar 

  47. Li D, Patel AR, Klibanov AL, et al.: Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging 2010, 3(4):464–472.

    Article  CAS  PubMed  Google Scholar 

  48. Silvera SS, Aidi HE, Rudd JHF, et al.: Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009, 207(1):139–143.

    Article  CAS  PubMed  Google Scholar 

  49. •• Shepherd J, Hilderbrand SA, Waterman P, et al.: A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol 2007, 14(11):1221–1231. This study describes the first in vivo imaging of MPO activity using an activatable fluorescent probe called SNAPF. Upon activation the agent emits far-red light, making it highly suitable for in vivo imaging.

    Article  CAS  PubMed  Google Scholar 

  50. Calfon MA, Vinegoni C, Ntziachristos V, Jaffer FA: Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. J Biomed Opt 2010, 15(1):011107.

    Article  PubMed  Google Scholar 

  51. •• Gross S, Gammon ST, Moss BL, et al.: Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 2009, 15(4):455–461. This study describes the use of the chemiluminescent agent luminol to locate MPO activity in vivo in a variety of mouse models using bioluminescence imaging. In vivo specificity of luminol oxidation (and thus luminescence) to MPO, but not eosinophil peroxidase, activity is also shown.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Ronald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronald, J.A. Imaging Myeloperoxidase Activity in Cardiovascular Disease. Curr Cardiovasc Imaging Rep 4, 24–31 (2011). https://doi.org/10.1007/s12410-010-9056-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9056-2

Keywords

Navigation