Skip to main content

Advertisement

Log in

Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system?

  • Review Article
  • Published:
ADHD Attention Deficit and Hyperactivity Disorders

Abstract

A major concern regarding psychostimulant medication (amphetamine and methylphenidate) in the treatment of children and adolescents with attention deficit/hyperactivity disorder (ADHD) are the potential adverse effects to the developing brain, particularly in regard to dopaminergic brain function. The present review focuses on the pharmacology of these psychostimulants, their mode of action in the human brain and their potential neurotoxic effects to the developing brain in animals, particularly concerning DA brain function. The potential clinical significance of these findings for the treatment of ADHD in children and adolescents is discussed. Studies on sensitization to psychostimulants’ rewarding effects, which is a process expected to increase the risk of substance abuse in humans, are not included. The available findings in non-human primates support the notion that the administration of amphetamine and methylphenidate with procedures simulating clinical treatment conditions does not lead to long-term adverse effects in regard to development, neurobiology or behaviour as related to the central dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AACCP Official Action (2002) Practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults. J Am Acad Child Adolesc Psychiatry 41(Suppl 2):26S–49S

    Google Scholar 

  • Advokat C (2007) Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD. J Attent Disord 11(1):8–16

    Article  Google Scholar 

  • Arnold LE (2000) Methylphenidate versus amphetamine: a comparative review. In: Greenhill LL, Osman BB (eds) Ritalin, theory and practice. Mary Ann Liebert, New Rochelle, pp 127–139

    Google Scholar 

  • Bock N, Gerlach M, Rothenberger A (2010) Postnatal brain development and psychotropic drugs. Effects on animals and animal models of depression and attention-deficit/hyperactivity disorders. Curr Pharm Design 16:2474–2483

    Article  CAS  Google Scholar 

  • Buchhorn R, Conzelmann A, Willaschek C, Störk D, Taurines R, Renner T (2012) Heart rate variability and methylphenidate in children with ADHD. ADHD Atten Defic Hyperact Disord 4:85–91

    Article  Google Scholar 

  • Christine CW, Garwood ER, Schrock LE, Austin DE, McCulloch CE (2010) Parkinsonism in patients with a history of amphetamine exposure. Mov Disord 25:228–231

    Article  PubMed  Google Scholar 

  • Diaz Heijtz R, Kolb B, Forssberg H (2003) Short communication. Can a therapeutic dose of amphetamine during pre-adolescence modify the pattern of synaptic organization in the brain? Eur J Neurosci 18:3394–3399

    Article  PubMed  Google Scholar 

  • Eriksen J, Jorgensen TN, Gether U (2010) Regulation of dopamine transporter function by protein–protein interactions: new discoveries and methodological challenges. J Neurochem 113(1):27–41

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR (2010) Strengths and limitations of genetic models of ADHD. ADHD Atten Defic Hyperact Disord 2:21–30

    Article  Google Scholar 

  • Garwood ER, Bekele W, McCulloch CE, Christine CW (2006) Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology 27:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Banaschewski T, Warnke A, Rothenberger A (2003) Ist ein Parkinson-Syndrom als Spätfolge einer Methylphenidat-Behandlung im Kindesalter möglich? Eine empirische Standortbestimmung. Nervenheilkunde 22:80–84

    Google Scholar 

  • German CL, Hanson GR, Fleckenstein AE (2012) Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter relocalization. J Neurochem 123:288–297

    Article  PubMed  CAS  Google Scholar 

  • Gill KE, Pierre PJ, Daunais J, Bennett AJ, Martelle S, Gage HD, Swanson JM, Nader MA, Porrino LJ (2012) Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates. Neuropsychopharmacology 37(12):2555–2565

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gray JD, Punsoni M, Tabori NE, Melton JT, Fanslow V, Ward M, Zupan B, Menzer D, Rice J, Drake CT, Romeo RD, Brake WG, Torres-Reveron Am Milner TA (2007) Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviours, appetite, and stress. J Neurosci 27:7196–7207

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Gerlach M (2012). Letter to the editor: methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. Plos One (http://www.plosone.org/annotation/listThread.action?root=53905)

  • Grund T, Teuchert-Noodt G, Busche A, Neddens J, Brummelte S, Moll GH, Dawirs RR (2007) Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. Brain Res 1176:124–132

    Article  PubMed  CAS  Google Scholar 

  • Halliday G, McRitchie D, Cartwright H, Pamphlett R, Hely M, Morris J (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3:52–60

    Article  PubMed  CAS  Google Scholar 

  • Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding Y-S (2010) Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 68(9):854–860

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Mytilineou C, Cohen C (1975) Amphetamine: evaluation of d-and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194:47–56

    PubMed  CAS  Google Scholar 

  • Huang Y-S, Tsai M-H (2011) Long-term outcomes with medications for attention-deficit hyperactivity disorder. Current status of knowledge. CNS Drugs 25:539–554

    Article  PubMed  Google Scholar 

  • Iversen L (ed) (2006) Speed, ecstasy, ritalin. The science of amphetamines, Oxford

    Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of Methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037

    Article  PubMed  CAS  Google Scholar 

  • Lange KW, Reichl S, Lange KM, Tucha L, Tucha O (2010) The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2:241–255

    Google Scholar 

  • Markowitz JS, Straughn AB, Patrick KS, DeVane C, Pestreich L, Lee J, Wang Y, Munitz R (2003) Pharmacokinetics of methylphenidate after oral administration of two modified-release formulations in healthy adults. Clin Pharmacokinet 42:393–401

    Article  PubMed  CAS  Google Scholar 

  • Markowitz JS, DeVane CL, Pestreich LK, Patrick KS, Muniz R (2006) A comprehensive in vitro screening of d-, l-, and dl-threo-methylphenidate: an exploratory study. J Child Adolesc Psychopharmacol 16(6):687–698

    Article  PubMed  Google Scholar 

  • Moll GH, Hause S, Ruther E, Rothenberger A, Hüther G (2001) Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 11(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Kaddoumi A, Ishida Y, Itoh Z, Taki K (2003) Determination of methamphetamine and amphetamine in abuser’s plasma and hair samples with HPLC-FL. Biomed Chromatogr 17:471–476

    Article  PubMed  CAS  Google Scholar 

  • Pearl RG, Seiden LS (1979) d-Amphetamine-induced increase in catecholamine synthesis in the corpus striatum of the rat: persistence of the effect after tolerance. J Neural Transm 44:21–38

    Article  PubMed  CAS  Google Scholar 

  • Peters FT, Samyn N, Wahl M, Kraemer T, De Boeck G, Maurer HH (2003) Concentrations and ratios of amphetamine, methamphetamine, MDA, MDMA and MDEA enantiomers determined in plasma samples from clinical toxicology and driving under the influence of drugs cases by GC-NICI-MS. J Anal Toxicol 27:552–559

    Article  PubMed  CAS  Google Scholar 

  • Quinn D, Wigal S, Swanson J, Hirsch S, Ottolini Y, Dariani M, Roffman M, Zeldis J, Cooper T (2004) Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d, l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43:1422–1429

    Article  PubMed  Google Scholar 

  • Ricaurte GA, Mechan AO, Yuan J, Hatzidimitriou G, Xie T, Mayne AH, McCann UD (2005) Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J Pharmacol Exp Ther 315:91–98

    Article  PubMed  CAS  Google Scholar 

  • Riccardi P, Li R, Ansari MS, Zahld D, Park S, Dawant B, Andersen S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin E, Kessler R (2006) Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 31:1016–1026

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Camp DM (1987) Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behaviour and spontaneous nocturnal locomotion. Pharmacol Biochem Behav 26:821–827

    Article  PubMed  CAS  Google Scholar 

  • Roessner V, Sagvolden T, DasBanerjee T, Middleton FA, Faraone SV, Walaas SI, Becker A, Rothenberger A, Bock N (2010) Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not the same extend in one of the attention-deficit/hyperactivity disorder inattentive type. Neuroscience 167:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Rash JA, Aguirre-Camacho A (2012) Attention-deficit hyperactivity disorder and cardiac vagal control: a systematic review. ADHD Atten Defic Hyperact Disord 4:167–177

    Article  Google Scholar 

  • Ryan LJ, Martone ME, Linder JC, Groves PM (1988) Brief communication. Continuous amphetamine administration induced tyrosine hydroxylase immunoreactive patches in the adult rat neostriatum. Brain Res Bull 21:133–137

    Article  PubMed  CAS  Google Scholar 

  • Sadasivan S, Pond BP, Pani AK, Qu C, Jiao Y, Smeyne RJ (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS ONE 7(3):e33693m. doi:10.1371/journal.pone.0033693

    Article  Google Scholar 

  • Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87:273–289

    Article  PubMed  CAS  Google Scholar 

  • Shaw P (2011) ADHD medications and cardiovascular risk: some heartening news. JAMA 306:2723–2724

    Article  PubMed  CAS  Google Scholar 

  • Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. ADHD Atten Defic Hyperact Disord 2:1–20

    Article  Google Scholar 

  • Soto PL, Wilcox KM, Zhou Y, Ator NA, Riddle MA, Wong D, Weed MR (2012) Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development. Neuropsychopharmacology 37:2566–2579

    Article  PubMed  CAS  Google Scholar 

  • Stopper H, Walitza S, Warnke A, Gerlach M (2008) Brief review of available evidence concerning the potential induction of genomic damage by methylphenidate. J Neural Transm 115:331–334

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, Volkow ND (2001) Pharmacokinetic and pharmacodynamic properties of methylphenidate in humans. In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD. Oxford University Press, Oxford, pp 259–282

    Google Scholar 

  • Swanson JM, Volkow ND (2003) Serum and brain concentrations of methylphenidate: implications for use and abuse. Neurosci Biobehav Rev 27:615–621

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Snyder SH (1974) Amphetamine: differentiation by d and l isomers of behaviour involving brain norepinephrine or dopamine. Science 168:1487–1489

    Article  Google Scholar 

  • Volkow ND (2012) Long-term safety of stimulant use for ADHD: findings from nonhuman primates. Neuropsychopharmacology 37:2551–2552

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Insel TR (2003) Editorial. What are the long-term effects of methylphenidate treatment? Biol Psychiatry 54:1307–1309

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, Abumrad NN, Gatley SJ, Logan J, Wong C, Gifford A, Ding Y-S, Hitzemann R, Pappas N (1999) Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci 65:PL7–12

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human bran. J Neurosci 21:RC121(1–5)

    Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM (2004) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry 161:1173–1180

    Article  PubMed  Google Scholar 

  • Walitza S, Melfsen S, Herhaus G, Scheuerpflug P, Warnke A, Müller T, Lange KW, Gerlach M (2007) Association of Parkinson’s disease with symptoms of attention deficit hyperactivity disorder in childhood. J Neural Transm 72(Suppl):311–315

    Article  Google Scholar 

  • Yuan J, McCann U, Ricaurte G (1997) Methylphenidate and brain dopamine neurotoxicity. Brain Res 767:172–175

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gerlach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlach, M., Grünblatt, E. & Lange, K.W. Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system?. ADHD Atten Def Hyp Disord 5, 71–81 (2013). https://doi.org/10.1007/s12402-013-0105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12402-013-0105-y

Keywords

Navigation