Skip to main content
Log in

Novel Antiplatelet Agents: ALX-0081, a Nanobody Directed towards von Willebrand Factor

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This manuscript reviews the studies performed with ALX-0081 (INN: caplacizumab), a Nanobody targeting von Willebrand factor, in the context of current antithrombotic therapy in coronary artery disease. ALX-0081 specifically inhibits platelet adhesion to the vessel wall, and may control platelet aggregation and subsequent clot formation without increasing bleeding risk. A substantial number of antithrombotics are aimed at this cascade; however, their generally indiscriminative mode of action can result in a narrow therapeutic window, defined by the risk for bleeding complications, and thrombotic events. Nonclinically, ALX-0081 compared favorably to several antithrombotics. In Phase I studies in healthy subjects and stable angina patients undergoing percutaneous coronary intervention (PCI), ALX-0081 was well tolerated, and effectively inhibited pharmacodynamic markers. Following these results, a phase II study was initiated in high-risk acute coronary syndrome patients undergoing PCI. Based on its mechanism of action, ALX-0081 is also being developed for acquired thrombotic thrombocytopenic purpura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., et al. (2012). Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation, 125(1), 2–220.

    Article  Google Scholar 

  2. Muller, O., Hamilos, M., Bartunek, J., Ulrichts, H., Mangiacapra, F., Holz, J. B., et al. (2010). Relation of endothelial function to residual platelet reactivity after clopidogrel in patients with stable angina pectoris undergoing percutaneous coronary in- tervention. The American Journal of Cardiology, 105(3), 333–8.

    Google Scholar 

  3. Bhatt, D. L., & Topol, E. J. (2003). Scientific and therapeutic advances in antiplatelet therapy. Nature Reviews. Drug Discovery, 2(1), 15–28.

    Article  PubMed  CAS  Google Scholar 

  4. Jackson, S. P., & Schoenwaelder, S. M. (2003). Antiplatelet therapy: in search of the ‘magic bullet’. Nature Reviews. Drug Discovery, 2(10), 775–789.

    Article  PubMed  CAS  Google Scholar 

  5. Kumar, A., & Cannon, C. P. (2009). Acute coronary syndromes: diagnosis and management, part II. Mayo Clinic proceedings. Mayo Clinic, 84(11), 1021–36.

    Google Scholar 

  6. Kumar, A., & Cannon, C. P. (2009). Acute coronary syndromes: diagnosis and management, part I. Mayo Clinic proceedings. Mayo Clinic, 84(10), 917–38.

    Article  Google Scholar 

  7. Holmes, D. R., Jr., Gersh, B. J., Whitlow, P., King, S. B., 3rd, & Dove, J. T. (2008). Percutaneous coronary intervention for chronic stable angina: a reassessment. JACC. Cardiovascular Interventions, 1(1), 34–43.

    Article  PubMed  Google Scholar 

  8. Bornstein, N. M. (2001). Antiplatelet drugs: how to select them and possibilities of combined treatment. Cerebrovascular Diseases, 11(Suppl 1), 96–9.

    Article  PubMed  CAS  Google Scholar 

  9. Savi, P., Zachayus, J. L., Delesque-Touchard, N., Labouret, C., Herve, C., Uzabiaga, M. F., et al. (2006). The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 11069–74.

    Article  PubMed  CAS  Google Scholar 

  10. Mangiacapra, F., Muller, O., Ntalianis, A., Trana, C., Heyndrickx, G. R., Bartunek, J., et al. (2010). Comparison of 600 versus 300-mg Clopidogrel loading dose in patients with ST-segment elevation myocardial infarction undergoing primary coronary angioplasty. The American Journal of Cardiology, 106(9), 1208–11.

    Article  PubMed  CAS  Google Scholar 

  11. Patti, G., Barczi, G., Orlic, D., Mangiacapra, F., Colonna, G., Pasceri, V., et al. (2011). Outcome comparison of 600- and 300-mg loading doses of clopidogrel in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: results from the ARMYDA-6 MI (Antiplatelet therapy for Reduction of Myocardial Damage during Angioplasty-Myocardial Infarction) randomized study. Journal of the American College of Cardiology, 58(15), 1592–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kristensen, S. D., Wurtz, M., Grove, E. L., De Caterina, R., Huber, K., Moliterno, D. J., et al. (2012). Contemporary use of glycoprotein IIb/IIIa inhibitors. Thrombosis and Haemostasis, 107(2), 215–24.

    Article  PubMed  CAS  Google Scholar 

  13. Cuisset, T., Hamilos, M., Sarma, J., Sarno, G., Wyffels, E., Vanderheyden, M., et al. (2008). Relation of low response to clopidogrel assessed with point-of-care assay to periprocedural myonecrosis in patients undergoing elective coronary stenting for stable angina pectoris. The American Journal of Cardiology, 101(12), 1700–3.

    Article  PubMed  CAS  Google Scholar 

  14. Mangiacapra, F., & Barbato, E. (2010). Residual platelet reactivity: predicting short- and long-term clinical outcome in patients undergoing percutaneous coronary revascularization. Biomarkers in Medicine, 4(3), 421–34.

    Article  PubMed  Google Scholar 

  15. Bhatt, D. L., & Topol, E. J. (2000). Current role of platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes. JAMA: The Journal of the American Medical Association, 284(12), 1549–1558.

    Article  CAS  Google Scholar 

  16. Gum, P. A., Kottke-Marchant, K., Poggio, E. D., Gurm, H., Welsh, P. A., Brooks, L., et al. (2001). Profile and prevalence of aspirin resistance in patients with cardiovascular disease. The American Journal of Cardiology, 88(3), 230–235.

    Article  PubMed  CAS  Google Scholar 

  17. Lev, E. I., Patel, R. T., Maresh, K. J., Guthikonda, S., Granada, J., DeLao, T., et al. (2006). Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance. Journal of the American College of Cardiology, 47(1), 27–33.

    Article  PubMed  CAS  Google Scholar 

  18. Mangiacapra, F., De Bruyne, B., Muller, O., Trana, C., Ntalianis, A., Bartunek, J., et al. (2010). High residual platelet reactivity after clopidogrel: extent of coronary atherosclerosis and periprocedural myocardial infarction in patients with stable angina undergoing percutaneous coronary intervention. JACC. Cardiovascular Interventions, 3(1), 35–40.

    Article  PubMed  Google Scholar 

  19. Cordina, S. M. (2008). Novel therapies in the pipeline: directions of research into platelet inhibition. Journal of Vascular and Interventional Neurology, 1(2), 54–6.

    PubMed  Google Scholar 

  20. Sakariassen, K. S., Bolhuis, P. A., & Sixma, J. J. (1979). Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium. Nature, 279(5714), 636–638.

    Article  PubMed  CAS  Google Scholar 

  21. Rivera, J., Lozano, M. L., Navarro-Nunez, L., & Vicente, V. (2009). Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica, 94(5), 700–11.

    Article  PubMed  CAS  Google Scholar 

  22. Kageyama, S., Yamamoto, H., & Nakazawa, H. (2002). Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(1), 187–192.

    Article  PubMed  CAS  Google Scholar 

  23. Hennan, J. K., Swillo, R. E., & Morgan, G. A. (2006). Pharmacologic inhibition of platelet vWF-GPIb alpha interaction prevents coronary artery thrombosis. Thrombosis and Haemostasis, 95(3), 469–475.

    PubMed  CAS  Google Scholar 

  24. Cadroy, Y., Hanson, S. R., & Kelly, A. B. (1994). Relative antithrombotic effects of monoclonal antibodies targeting different platelet glycoprotein-adhesive molecule interactions in nonhuman primates. Blood, 83(11), 3218–3224.

    PubMed  CAS  Google Scholar 

  25. Diener, J. L., Lagasse, H. A., & Duerschmied, D. (2009). Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. Journal of Thrombosis and Haemostasis, 7(7), 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  26. Yao, S. K., Ober, J. C., Garfinkel, L. I., Hagay, Y., Ezov, N., Ferguson, J. J., et al. (1994). Blockade of platelet membrane glycoprotein Ib receptors delays intracoronary thrombogenesis, enhances thrombolysis, and delays coronary artery reocclusion in dogs. Circulation, 89(6), 2822–2828.

    Article  PubMed  CAS  Google Scholar 

  27. Wadanoli, M., Sako, D., Shaw, G. D., Schaub, R. G., Wang, Q., Tchernychev, B., et al. (2007). The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thrombosis and Haemostasis, 98(2), 397–405.

    PubMed  CAS  Google Scholar 

  28. Machin., S, Clarke, C., Ikemura, O. (2003) A humanized monoclonal antibody against vWF A1 domain inhibits vWF: RiCof activity and platelet adhesion in human volunteers [abstract]. Journal of Thrombosis and Haemostasis Haemost. Suppl 1 (Abstract OC328).

  29. Ok-Nam, B. (2012). Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an Anti-vWF aptamer, against thrombotic risk. Archives of Pharmaceutical Research, 35(10), 1693–1699.

    Article  Google Scholar 

  30. Ulrichts, H., Silence, K., Schoolmeester, A., de Jaegere, P., Rossenu, S., Roodt, J., et al. (2011). Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared to currently marketed antiplatelet drugs. Blood, 118(3), 757–765.

    Article  PubMed  CAS  Google Scholar 

  31. Bartunek, J., E. Barbato, J.-B. Holz, K. Vercruysse, H. Ulrichts, and G. Heyndrickx (2008). ALX-0081 a novel antithrombotic: results of a single-dose phase 1 study in healthy volunteers and further development in patients with stable angina [Abstract]. Circulation 118: S_656

  32. Bartunek, J., E. Barbato, K. Vercruysse, C. Duby, W. Wijns, G. Heyndrickx, et al. (2010). Safety and efficacy of anti-von Willebrand factor Nanobody ALX-0081 in stable angina patients undergoing percutaneous coronary intervention [Abstract]. Circulation 122 (Abstract #15084).

  33. Cuisset, T., Hamilos, M., Melikian, N., Wyffels, E., Sarma, J., Sarno, G., et al. (2008). Direct stenting for stable angina pectoris is associated with reduced periprocedural microcirculatory injury compared with stenting after pre-dilation. Journal of the American College of Cardiology, 51(11), 1060–5.

    Article  PubMed  Google Scholar 

  34. Dong, J. F., Berndt, M. C., Schade, A., McIntire, L. V., Andrews, R. K., & Lopez, J. A. (2001). Ristocetin-dependent, but not botrocetin-dependent, binding of von Willebrand factor to the platelet glycoprotein Ib-IX-V complex correlates with shear-dependent interactions. Blood, 97(1), 162–168.

    Article  PubMed  CAS  Google Scholar 

  35. Muller et al. (2013). von Willebrand Factor Inhibition Improves Endothelial Function in Patients with Stable Angina. Journal of Cardiovascular Translational Research. doi10.1007/s12265-012-9422-3.

  36. Lip, G. Y., Huber, K., Andreotti, F., Arnesen, H., Airaksinen, J. K., Cuisset, T., et al. (2010). Antithrombotic management of atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing coronary stenting: executive summary—a consensus document of the European Society of Cardiology Working Group on Thrombosis, endorsed by the European Heart Rhythm Association (EHRA) and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 31(11), 1311–8.

    Article  PubMed  Google Scholar 

  37. Holz, J. B. (2012). The TITAN trial–assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfusion and apheresis science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis, 46(3), 343–6.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all collaborators at the OLV Hospital Aalst, the investigators and study staff involved in the studies mentioned in this manuscript, and the following contributors at Ablynx (in alphabetical order): Judith Baumeister, Tim De Smedt, Bernard Delaey, Christian Duby, Stefaan Rossenu, Patrick Stanssens, Hans Ulrichts, Femke Van Bockstaele, Kristof Vercruysse, Gert Verheyden, and Katrien Verschueren.

Ethical standards

All studies mentioned in this manuscript complied with the current laws of the country in which they were performed. All clinical studies were conducted in compliance with the principles of ICH and GCP, and the applicable regulatory requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefin-Beate Holz.

Additional information

1Nanobody® is a registered trademark of Ablynx NV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartunek, J., Barbato, E., Heyndrickx, G. et al. Novel Antiplatelet Agents: ALX-0081, a Nanobody Directed towards von Willebrand Factor. J. of Cardiovasc. Trans. Res. 6, 355–363 (2013). https://doi.org/10.1007/s12265-012-9435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9435-y

Keywords

Navigation