Skip to main content
Erschienen in: memo - Magazine of European Medical Oncology 1/2023

Open Access 12.04.2022 | short review

Radiotherapy update: current role of radiotherapy in the treatment of lymphomas

verfasst von: Cora Waldstein, MD

Erschienen in: memo - Magazine of European Medical Oncology | Ausgabe 1/2023

Summary

Radiotherapy (RT) remains an important modality in the modern treatment of lymphomas. In Hodgkin lymphoma (HL), its role is stage-dependent. In early stage favorable HL, RT is an essential component of combined treatment. In early unfavorable and advanced stage HL, RT can be omitted if patients are positron emission tomography-computed tomography (PET-CT) negative after chemotherapy. In non-Hodgkin lymphomas (NHL), RT can be used as definitive treatment of indolent lymphoma. In aggressive NHL, the role of RT is limited to consolidation therapy of bulky disease, extranodal involvement and in elderly patients. Overall, technology evolved from extended fields to involved-node (INRT) and involved-site radiotherapy (ISRT), with concurrent reduction in doses. This short review summarizes current evidence and provides a future outlook with regard to the role of RT in the treatment of lymphomas.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Radiotherapy is a highly effective treatment method for the majority of lymphomas. In the first half of the 20th century, patients with early stage Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) could be cured by radiotherapy alone; however, it was also associated with the development of late complications and increased mortality due to the need of extended fields and high dose levels.
With the advent of effective and less toxic chemotherapy, the use of radiotherapy has gradually declined in terms of field size and dose. In several types of NHL, radiotherapy has become a secondary modality for consolidation and reduction of relapse risk after chemotherapy. For localized follicular lymphoma (FL) and mantel cell lymphomas (MCL) where chemotherapy is less effective, radiotherapy alone is still the treatment of choice.
The aim of this short review is to outline the current treatment approaches in radiotherapy of common lymphomas and to discuss their clinical relevance. Studies with direct implications on clinical practice guidelines are summarized in Table 1.
Table 1
Studies with direct implications on clinical practice guidelines of RT in lymphomas
Study
Year
Design
Patient characteristics
Investigations
Patients receiving RT
Findings
Conclusion
Fuchs et al. [5]
GHSG HD16
2019
Prospective, randomized, phase III
n = 1150 with early stage favorable
HL
2‑arm randomization to standard 2 × ABVD +20 IFRT vs. 2 × ABVD and no RT after neg. PET scan
Overall n = 693
PET-neg. n = 353
PET-pos. n = 340
PFS at 5 years was 93.4% in the RT group and 86.1% in the ABVD alone group with in-field recurrence rate of 2% vs. 9%, p = 0.0003
RT cannot be omitted
Borchmann et al. [11]
GHSG HD17
2021
Prospective, randomized, phase III
n = 1100 with early stage unfavorable
HL
2‑arm randomization to standard 2 + 2 (2 × ABVD + 2 × Besc) + 30 IFRT vs. 2 + 2 and no RT after neg. PET scan
Overall n = 588
PET-neg. n = 353
PET-pos. n = 340
PFS at 5 years was 97.3% in the standard CMT group and 95.1% in the PET-guided group
RT can be omitted in PET-neg. patients
Engert et al. [12]
GHSG HD15
2012
Prospective, randomized, phase III
n = 2182 with advanced stage HL
3‑arm randomization to 8 × Besc vs. 6 × Besc vs. 8 B14. Additional RT (30 Gy) to PET-pos. lesions or residual disease ≥ 2.5 cm
n = 225
Overall, 6 × Besc showed better efficacy and fewer serious toxic effects than 8 × Besc.
The negative predictive value for PET at 12 months was 94.1%
6 × Besc should be the treatment of choice. PET done after chemotherapy can guide the need for additional radiotherapy
Hoskin et al. [22]
FORT
2014
Prospective, randomized, phase III
n = 548 patients with 614 sites of indolent lymphoma
2‑arm randomization to RT with 4 Gy vs. 24 Gy
299 sites with 24 Gy
315 sites with 4 Gy
91% with 24 Gy and 81% with 4 Gy had CR or PR (p = 0.00095). No difference in OS
24 Gy is the standard of care for indolent lymphoma
Pfreundschuh et al. [25]
UNFOLDER
2018
Prospective, randomized
n = 467, patients with advanced stage DLBCL
2‑arm randomization to 6 × R-CHOP-14 vs. 6 × R-CHOP-21 followed by either RT (39.6 Gy) or observation to bulky or extranodal disease or observation
Overall: n = 305
EFS was significantly improved with RT (p = 0.004) after an interim analysis observation arm terminated early; 3‑year EFS was significantly worse with no RT (68% vs. 84%; p = 0.001). No significant differences in PFS/OS
Worse EFS in the observation arm, but no difference in PFS and OS
RT radiotherapy, HL Hodgkin lymphoma, IFRT involved field radiotherapy, PFS progression-free survival, CMT combined modality treatment, CR complete response, PR partial response, OS overall survival, DLBCL diffuse large B‑cell lymphoma, EFS event-free survival, pos. positive, neg. negative

Hodgkin lymphoma

In HL, radiotherapy has traditionally been used as a primary treatment modality with excellent tumor control; albeit there were significant challenges due to treatment-related morbidity. While for some HL patients, radiotherapy alone still plays a role as a single modality in early stage lymphocyte-predominant HL, it is now mostly used in combination with chemotherapy with high cure rates. Five-year relative survival rates of 96.4% and 89.8% were reported for patients diagnosed at the age of 0–19 years and of 20–64 years, respectively [1]. In the combined treatment modality for HL, RT improves locoregional control and overall outcome. With increasing effectiveness of curative approaches, a reduction in late side effects and an increase in quality of life is gaining importance. Therefore, RT should maintain its effectiveness in local control, while minimizing radiation dose to normal tissue. Extended-field radiation, where adjacent regions are also treated, was replaced by involved-site and involved-node radiation fields regions, depending on the quality and accuracy of the prechemotherapy imaging.

Early stage classical Hodgkin lymphoma

The protocol of the German HD10 trial with two cycles of ABVD followed by 20 Gy of INRT or ISRT is currently the state-of-the-art treatment approach [2, 3]. Attempts to reduce chemotherapy in the German HD13 trial and to omit radiotherapy in PET-CT negative patients after chemotherapy in the German HD 16 trial resulted in relevant loss of tumor control [4, 5]. The RAPID trial and the EORTC H10 trial confirmed these findings with a 3-year progression-free survival (PFS) of 97% in the radiotherapy group versus 90% in the group of no radiotherapy and a 5-year PFS of 99% versus 87% in PET-CT negative patients, respectively [6, 7].

Early stage classical Hodgkin lymphoma with unfavorable prognostic factors

The standard treatment in unfavorable HL was a combination of four cycles of chemotherapy and consolidation radiotherapy with a dose of 30 Gy [8, 9]. The German HD14 trial introduced an intensified chemotherapy regimen consisting of 2 cycles eBEACOPP plus 2 cycles ABVD (2 + 2) followed by 30 Gy involved field radiotherapy [10]. To further reduce late complications, the German HD 17 trial showed that consolidation radiotherapy could be omitted without a clinically relevant loss of tumor control in patients with a negative PET-CT after systemic therapy with the 2 + 2 regimen [11].

Advanced Hodgkin lymphoma

The main treatment modality of advanced Hodgkin lymphoma is combination chemotherapy. The German HD 15 trial found that the omission of radiotherapy in patients with a complete metabolic response was noninferior (4-year PFS 92%) compared to patients with a positive PET-CT after chemotherapy and additional RT (4-year PFS 86%) [12]. The RATHL trial confirmed these results by omitting radiotherapy in PET-CT negative patients without a loss of disease control [13]. Thus, the recommendation in the following HD18 trial remained radiotherapy for lesions of at least 2.5 cm in the largest diameter with residual fluorodeoxyglucose (FDG) uptake after chemotherapy [14].

Non-Hodgkin lymphomas

In the contemporary management of NHL, radiotherapy still plays an essential role in both aggressive and indolent subtypes. For many localized indolent NHL, radiotherapy remains the standard of care, while most aggressive NHL are treated with systemic therapy alone and radiotherapy is partially used for consolidation. Modern guidelines recommend ISRT for the treatment of NHL, but if radiotherapy is used as definitive treatment without combined modality treatment, larger treatment volumes should be considered to encompass microscopic disease in the vicinity [15, 16].
Recently, RT has shown a promising role as a bridging strategy to chimeric antigen receptor (CAR)-T cell therapy for patients with relapsed/refractory NHL [17]. Upfront bridging RT to CAR‑T cell therapy provides excellent local control rates of 86% after 1 year and response with a median duration of local response of 257 days [18].

Indolent lymphoma

In indolent lymphoma, RT provides excellent local control; however, its impact on overall survival may be limited and thus the role of RT is still debated. Concerning local tumor control of FL or MCL after radiotherapy alone, studies report high overall response rate (ORR) of > 90% [19]. In a retrospective Australian/Canadian study of 365 early stage FL patients, active treatment versus observation was investigated [20]. Active treatment including radiotherapy was associated with better PFS, but no difference in overall survival (OS) was found. Both patients with radiotherapy alone and patients undergoing observation had similar time to transformation. In the modern era, the radiation dose for indolent NHL has been dramatically reduced from 40–50 Gy to 24–30 Gy and modern guidelines recommend small fields [15, 16]. Thus, morbidity has been reduced as well, and the indication for RT in indolent lymphoma should be decided on a case-by-case basis.
For palliative treatment intent, very low doses of RT (VLDRT) of 2 × 2 Gy have proven to be very effective [21]. Particularly for elderly or poor performance status patients, VLDRT can palliate lesions in a short treatment course irrespective of disease stage and delay the need for more standard-dose radiation or systemic therapy. The randomized phase III FORT trial investigated that VLDRT was significantly inferior in terms of local progression in comparison to the standard dose of 24 Gy [22]. Thus, a dose of 24 Gy remains the state-of-the-art in a curative setting and VLDRT with 4 Gy represents a good alternative in a palliative setting.

Aggressive lymphoma

In limited stage aggressive NHL, consolidation radiotherapy has a limited role and is considered in specific scenarios such as bulky disease, extranodal involvement and geriatric patients. The RECOVER-60 trial and the companion study observed that patients with bulky disease where RT was omitted had significantly decreased PFS and OS [23, 24]. The German UNFOLDER study confirmed these results, as the observation arm without RT of bulky disease or extranodal involvement was terminated prematurely [25]. Elderly patients with a greater risk of poor chemotherapy tolerance and cardiac toxicity from systemic therapy may have a benefit with improved outcome with consolidation radiotherapy [26].
In advanced stages of aggressive lymphoma, the use of consolidation radiotherapy is unclear and controversially discussed. A recent published meta-analysis including 4584 patients with diffuse large B‑cell lymphoma (DLBCL) in 11 trials observed no evidence for a better survival outcome of a consolidation radiotherapy. Furthermore, patients with a complete morphologic remission after chemotherapy or initial bulky disease were unlikely to benefit from radiotherapy [27]. Additional future trials in the PET-CT era are needed to define the role of consolidation radiotherapy. In general, patients with advanced stage disease should be discussed in a multidisciplinary team to balance the advantages and disadvantages of RT, particularly with regard to toxicity.

Conclusion and future directions

To further improve radiotherapy of lymphomas, several aspects should be considered in the future. First, the use of advanced radiotherapeutic technologies and RT dose de-escalation promise reducing late treatment complications while maintaining high control rates. Concerning technological advances, conformal techniques such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), inspiration breath-hold techniques, image-guided radiation therapy (IGRT) and 4D imaging may offer improved sparing of critical adjacent regions and are already in active use in many departments. On the other hand, the role of proton therapy is not well defined yet and the limited availability leads to case selection. Particularly, patients with mediastinal involvement may benefit from proton therapy in the future [28]. With regard to dose de-escalation, future research may aim to further reduce RT dose without compromising outcomes. For instance, a recent phase II study evaluated the feasibility of 20 Gy instead of 30 Gy in diffuse large B‑cell lymphoma and observed stable local tumor control [29].
Second, the role of RT in the era of immunotherapy still needs to be investigated. Potentially, radiation doses may be further reduced if RT is added as an adjunct to immunotherapy. For example, the addition of low dose total skin electron therapy (12 Gy) to multimodality immunotherapy in patients with Sèzary syndrome may lead to better long-term clinical and molecular remissions [30].
In conclusion, both definitive and consolidation radiotherapy remain important pillars in modern era treatment of HL and NHL. While doses and fields are being successfully reduced leading to improved local tolerability, control rates remain excellent due to combination with standard chemotherapy protocols. Future directions include technological advances as well as the inclusion of immunotherapy into the treatment armamentarium.
Take home messages
  • In early stage favorable Hodgkin lymphoma, consolidating radiotherapy is indispensable after initial chemotherapy. In other stages of Hodgkin lymphoma, radiotherapy can be omitted if PET-CT is negative following chemotherapy.
  • In indolent lymphoma, radiotherapy alone can be provided as definitive treatment with excellent local control rates.
  • Radiotherapy in aggressive lymphoma is offered in the setting of bulky disease, extranodal involvement and in elderly patients, although data are inconclusive and its role is controversially discussed.
  • The continued reduction in dose and field, which became possible due to combination of radiotherapy with modern chemotherapy and immunotherapy, provides improved tolerability.

Conflict of interest

C. Waldstein declares that she has no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
2.
Zurück zum Zitat Engert A, Plütschow A, Eich HT, Lohri A, Dörken B, Borchmann P, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.CrossRefPubMed Engert A, Plütschow A, Eich HT, Lohri A, Dörken B, Borchmann P, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.CrossRefPubMed
3.
Zurück zum Zitat Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.CrossRefPubMed Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.CrossRefPubMed
4.
Zurück zum Zitat Behringer K, Goergen H, Hitz F, Zijlstra JM, Greil R, Markova J, et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): an open-label, randomised, non-inferiority trial. Lancet. 2015;385(9976):1418–27.CrossRefPubMed Behringer K, Goergen H, Hitz F, Zijlstra JM, Greil R, Markova J, et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): an open-label, randomised, non-inferiority trial. Lancet. 2015;385(9976):1418–27.CrossRefPubMed
5.
Zurück zum Zitat Fuchs M, Goergen H, Kobe C, Kuhnert G, Lohri A, Greil R, et al. Positron emission tomography-guided treatment in early-stage favorable Hodgkin lymphoma: final results of the international, randomized phase III HD16 trial by the German Hodgkin study group. J Clin Oncol. 2019;37(31):2835–45.CrossRefPubMed Fuchs M, Goergen H, Kobe C, Kuhnert G, Lohri A, Greil R, et al. Positron emission tomography-guided treatment in early-stage favorable Hodgkin lymphoma: final results of the international, randomized phase III HD16 trial by the German Hodgkin study group. J Clin Oncol. 2019;37(31):2835–45.CrossRefPubMed
6.
Zurück zum Zitat André MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94.CrossRefPubMed André MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94.CrossRefPubMed
7.
Zurück zum Zitat Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.CrossRefPubMed Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.CrossRefPubMed
8.
Zurück zum Zitat Engert A, Schiller P, Josting A, Herrmann R, Koch P, Sieber M, et al. Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin’s lymphoma: results of the HD8 trial of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(19):3601–8.CrossRefPubMed Engert A, Schiller P, Josting A, Herrmann R, Koch P, Sieber M, et al. Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin’s lymphoma: results of the HD8 trial of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(19):3601–8.CrossRefPubMed
9.
Zurück zum Zitat Fermé C, Eghbali H, Meerwaldt JH, Rieux C, Bosq J, Berger F, et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med. 2007;357(19):1916–27.CrossRefPubMed Fermé C, Eghbali H, Meerwaldt JH, Rieux C, Bosq J, Berger F, et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med. 2007;357(19):1916–27.CrossRefPubMed
10.
Zurück zum Zitat von Tresckow B, Plütschow A, Fuchs M, Klimm B, Markova J, Lohri A, et al. Dose-intensification in early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD14 trial. J Clin Oncol. 2012;30(9):907–13.CrossRef von Tresckow B, Plütschow A, Fuchs M, Klimm B, Markova J, Lohri A, et al. Dose-intensification in early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD14 trial. J Clin Oncol. 2012;30(9):907–13.CrossRef
11.
Zurück zum Zitat Borchmann P, Plütschow A, Kobe C, Greil R, Meissner J, Topp MS, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–34.CrossRefPubMed Borchmann P, Plütschow A, Kobe C, Greil R, Meissner J, Topp MS, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–34.CrossRefPubMed
12.
Zurück zum Zitat Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9.CrossRefPubMed Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9.CrossRefPubMed
13.
Zurück zum Zitat Trotman J, Fosså A, Federico M, Stevens L, Kirkwood A, Clifton-Hadley L, et al. Response-adjusted therapy for advanced Hodgkin lymphoma (RATHL) trial: Longer follow up confirms efficacy of de-escalation after a negative interim PET scan (CRUK/07/033). Hematol Oncol. 2017;35(S2):65–7.CrossRef Trotman J, Fosså A, Federico M, Stevens L, Kirkwood A, Clifton-Hadley L, et al. Response-adjusted therapy for advanced Hodgkin lymphoma (RATHL) trial: Longer follow up confirms efficacy of de-escalation after a negative interim PET scan (CRUK/07/033). Hematol Oncol. 2017;35(S2):65–7.CrossRef
14.
Zurück zum Zitat Kreissl S, Goergen H, Buehnen I, Kobe C, Moccia A, Greil R, et al. PET-guided eBEACOPP treatment of advanced-stage Hodgkin lymphoma (HD18): follow-up analysis of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 2021;8(6):e398–e409.CrossRefPubMed Kreissl S, Goergen H, Buehnen I, Kobe C, Moccia A, Greil R, et al. PET-guided eBEACOPP treatment of advanced-stage Hodgkin lymphoma (HD18): follow-up analysis of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 2021;8(6):e398–e409.CrossRefPubMed
15.
Zurück zum Zitat Illidge T, Specht L, Yahalom J, Aleman B, Berthelsen AK, Constine L, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49–58.CrossRefPubMed Illidge T, Specht L, Yahalom J, Aleman B, Berthelsen AK, Constine L, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49–58.CrossRefPubMed
16.
Zurück zum Zitat Yahalom J, Illidge T, Specht L, Hoppe RT, Li YX, Tsang R, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):11–31.CrossRefPubMed Yahalom J, Illidge T, Specht L, Hoppe RT, Li YX, Tsang R, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):11–31.CrossRefPubMed
17.
Zurück zum Zitat Figura NB, Robinson TJ, Sim AJ, Wang X, Cao B, Chavez JC, et al. Patterns and predictors of failure in recurrent or refractory large B‑cell lymphomas after chimeric antigen receptor T‑cell therapy. Int J Radiat Oncol Biol Phys. 2021;111(5):1145–54.CrossRefPubMedPubMedCentral Figura NB, Robinson TJ, Sim AJ, Wang X, Cao B, Chavez JC, et al. Patterns and predictors of failure in recurrent or refractory large B‑cell lymphomas after chimeric antigen receptor T‑cell therapy. Int J Radiat Oncol Biol Phys. 2021;111(5):1145–54.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Saifi O, Breen WG, Lester SC, Rule WG, Stish B, Rosenthal A, et al. Does bridging radiation therapy affect the pattern of failure after CAR T‑cell therapy in non-Hodgkin lymphoma? Radiother Oncol. 2021;166:171–9.CrossRefPubMed Saifi O, Breen WG, Lester SC, Rule WG, Stish B, Rosenthal A, et al. Does bridging radiation therapy affect the pattern of failure after CAR T‑cell therapy in non-Hodgkin lymphoma? Radiother Oncol. 2021;166:171–9.CrossRefPubMed
19.
Zurück zum Zitat Lowry L, Smith P, Qian W, Falk S, Benstead K, Illidge T, et al. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised phase III trial. Radiother Oncol. 2011;100(1):86–92.CrossRefPubMed Lowry L, Smith P, Qian W, Falk S, Benstead K, Illidge T, et al. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised phase III trial. Radiother Oncol. 2011;100(1):86–92.CrossRefPubMed
20.
Zurück zum Zitat Tobin JWD, Rule G, Colvin K, Calvente L, Hodgson D, Bell S, et al. Outcomes of stage I/II follicular lymphoma in the PET era: an international study from the Australian Lymphoma Alliance. Blood Adv. 2019;3(19):2804–11.CrossRefPubMedPubMedCentral Tobin JWD, Rule G, Colvin K, Calvente L, Hodgson D, Bell S, et al. Outcomes of stage I/II follicular lymphoma in the PET era: an international study from the Australian Lymphoma Alliance. Blood Adv. 2019;3(19):2804–11.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Russo AL, Chen YH, Martin NE, Vinjamoori A, Luthy SK, Freedman A, et al. Low-dose involved-field radiation in the treatment of non-Hodgkin lymphoma: predictors of response and treatment failure. Int J Radiat Oncol Biol Phys. 2013;86(1):121–7.CrossRefPubMed Russo AL, Chen YH, Martin NE, Vinjamoori A, Luthy SK, Freedman A, et al. Low-dose involved-field radiation in the treatment of non-Hodgkin lymphoma: predictors of response and treatment failure. Int J Radiat Oncol Biol Phys. 2013;86(1):121–7.CrossRefPubMed
22.
Zurück zum Zitat Hoskin PJ, Kirkwood AA, Popova B, Smith P, Robinson M, Gallop-Evans E, et al. 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial. Lancet Oncol. 2014;15(4):457–63.CrossRefPubMed Hoskin PJ, Kirkwood AA, Popova B, Smith P, Robinson M, Gallop-Evans E, et al. 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial. Lancet Oncol. 2014;15(4):457–63.CrossRefPubMed
23.
Zurück zum Zitat Held G, Murawski N, Ziepert M, Fleckenstein J, Pöschel V, Zwick C, et al. Role of radiotherapy to bulky disease in elderly patients with aggressive B‑cell lymphoma. J Clin Oncol. 2014;32(11):1112–8.CrossRefPubMed Held G, Murawski N, Ziepert M, Fleckenstein J, Pöschel V, Zwick C, et al. Role of radiotherapy to bulky disease in elderly patients with aggressive B‑cell lymphoma. J Clin Oncol. 2014;32(11):1112–8.CrossRefPubMed
24.
Zurück zum Zitat Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B‑cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2):105–16.CrossRefPubMed Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B‑cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2):105–16.CrossRefPubMed
25.
Zurück zum Zitat Pfreundschuh M, Murawski N, Ziepert M, Altmann B, Dreyling MH, Borchmann P, et al. Radiotherapy (RT) to bulky (B) and extralymphatic (E) disease in combination with 6xR-CHOP-14 or R‑CHOP-21 in young good-prognosis DLBCL patients: Results of the 2x2 randomized UNFOLDER trial of the DSHNHL/GLA. J Clin Oncol. 2018;36(15_suppl):7574.CrossRef Pfreundschuh M, Murawski N, Ziepert M, Altmann B, Dreyling MH, Borchmann P, et al. Radiotherapy (RT) to bulky (B) and extralymphatic (E) disease in combination with 6xR-CHOP-14 or R‑CHOP-21 in young good-prognosis DLBCL patients: Results of the 2x2 randomized UNFOLDER trial of the DSHNHL/GLA. J Clin Oncol. 2018;36(15_suppl):7574.CrossRef
26.
Zurück zum Zitat Parikh RR, Yahalom J. Older patients with early-stage diffuse large B‑cell lymphoma: the role of consolidation radiotherapy after chemoimmunotherapy. Leuk Lymphoma. 2017;58(3):614–22.CrossRefPubMed Parikh RR, Yahalom J. Older patients with early-stage diffuse large B‑cell lymphoma: the role of consolidation radiotherapy after chemoimmunotherapy. Leuk Lymphoma. 2017;58(3):614–22.CrossRefPubMed
27.
Zurück zum Zitat Berger MD, Trelle S, Büchi AE, Jegerlehner S, Ionescu C, Lamy de la Chapelle T, et al. Impact on survival through consolidation radiotherapy for diffuse large B‑cell lymphoma: a comprehensive meta-analysis. Haematologica. 2021;106(7):1923–31.CrossRefPubMed Berger MD, Trelle S, Büchi AE, Jegerlehner S, Ionescu C, Lamy de la Chapelle T, et al. Impact on survival through consolidation radiotherapy for diffuse large B‑cell lymphoma: a comprehensive meta-analysis. Haematologica. 2021;106(7):1923–31.CrossRefPubMed
28.
Zurück zum Zitat Dabaja BS, Hoppe BS, Plastaras JP, Newhauser W, Rosolova K, Flampouri S, et al. Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood. 2018;132(16):1635–46.CrossRefPubMedPubMedCentral Dabaja BS, Hoppe BS, Plastaras JP, Newhauser W, Rosolova K, Flampouri S, et al. Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood. 2018;132(16):1635–46.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kelsey CR, Broadwater G, James O, Chino J, Diehl L, Beaven AW, et al. Phase 2 study of dose-reduced consolidation radiation therapy in diffuse large B‑cell lymphoma. Int J Radiat Oncol Biol Phys. 2019;105(1):96–101.CrossRefPubMed Kelsey CR, Broadwater G, James O, Chino J, Diehl L, Beaven AW, et al. Phase 2 study of dose-reduced consolidation radiation therapy in diffuse large B‑cell lymphoma. Int J Radiat Oncol Biol Phys. 2019;105(1):96–101.CrossRefPubMed
30.
Zurück zum Zitat Durgin JS, Jariwala NN, Wysocka M, Zhang KK, Maity A, Benoit B, et al. Low-dose total skin electron beam therapy as part of a multimodality regimen for treatment of Sézary syndrome: clinical, immunologic, and molecular analysis. JAMA Dermatol. 2021;157(1):90.CrossRefPubMed Durgin JS, Jariwala NN, Wysocka M, Zhang KK, Maity A, Benoit B, et al. Low-dose total skin electron beam therapy as part of a multimodality regimen for treatment of Sézary syndrome: clinical, immunologic, and molecular analysis. JAMA Dermatol. 2021;157(1):90.CrossRefPubMed
Metadaten
Titel
Radiotherapy update: current role of radiotherapy in the treatment of lymphomas
verfasst von
Cora Waldstein, MD
Publikationsdatum
12.04.2022
Verlag
Springer Vienna
Erschienen in
memo - Magazine of European Medical Oncology / Ausgabe 1/2023
Print ISSN: 1865-5041
Elektronische ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-022-00803-y

Weitere Artikel der Ausgabe 1/2023

memo - Magazine of European Medical Oncology 1/2023 Zur Ausgabe