Skip to main content

Advertisement

Log in

Fas Gene Variants in Childhood Acute Lymphoblastic Leukemia and Association with Prognosis

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Fas molecule is one of the main important molecules involved in apoptotic cell death. Single nucleotide polymorphisms in the promoter of Fas gene at positions −1377G/A and −670 A/G may affect its expression and play an important role in the pathology of leukemia. In the present study the association between these polymorphisms and risk of the development of acute lymphoblastic leukemia (ALL) in children with ALL compared to cancer-free control subjects was examined by polymerase chain reaction- based restriction fragment length polymorphism. The relationship between the polymorphisms and clinical and laboratory features of the patients and response to therapy were determined. No significant differences in genotype and allele frequencies between the patients and the control subjects at positions −670 and −1377 were detected. Evaluation of the prognostic factors revealed an association between the GG genotype at position −670 and liver involvement in ALL patients (p < 0.04). Although patients with −1377 AA genotype showed shorter mean complete remission duration, the result of survival analysis did not reach to be significant. In conclusion, results of this study showed no contribution of Fas genotypes at positions −670 and −1377 to risk of ALL in children. The association of Fas GG genotype at position −670 with liver involvement in the patients may show its important role in prognosis of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Daneshbod Y, Amirghofran Z, Tabei SZ (2005) Bcl-2 expression in acute myelogenous leukemia: the relation to myeloid antigen expression and response to therapy in Iranian patients. Neoplasma 52:109–114

    PubMed  CAS  Google Scholar 

  2. Amirghofran Z, Monabati A, Gholijani N (2004) Androgen receptor expression in relation to apoptosis and the expression of cell cycle related proteins in prostate cancer. Pathol Oncol Res 10:37–41

    Article  PubMed  CAS  Google Scholar 

  3. Kaufmann T, Strasser A, Jost PJ (2012) Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 19:42–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Itoh N, Yonehara S (2000) The polypeptide encoded by the cDNA for human cell surface antigen FAS can mediate apoptosis. Cell 66:233–243

    Article  Google Scholar 

  6. Inazawa J, Itoh N, Abe T, Nagata S (1992) Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics 14:821–822

    Article  PubMed  CAS  Google Scholar 

  7. Behrmann I, Walczak H, Krammer PH (1994) Structure of the human APO-1 gene. Eur J Immunol 24:3057–3062

    Article  PubMed  CAS  Google Scholar 

  8. Muschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78:312–325

    Article  PubMed  CAS  Google Scholar 

  9. Sibley K, Rollinson S, Allan JM et al (2003) Functional Fas promoter polymorphism are associated with increased risk of acute myeloid leukemia. Cancer Res 63:4327–4330

    PubMed  CAS  Google Scholar 

  10. Wu J, Siddiqui J, Nihal M, Vonderheid EC et al (2011) Structural alterations of the FAS gene in cutaneous T-cell lymphoma (CTCL). Arch Biochem Biophys 15:185–191

    Article  CAS  Google Scholar 

  11. Zhang Z, Xue H, Gong W et al (2009) FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies. Carcinogenesis 30:487–493

    Article  PubMed  CAS  Google Scholar 

  12. Lei D, Sturgis EM, Wang LE et al (2010) FAS and FASLG genetic variants and risk for second primary malignancy in patients with squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 19:1484–1491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Cao Y, Miao XP, Huang MY et al (2010) Polymorphisms of death pathway genes FAS and FASL and risk of nasopharyngeal carcinoma. Mol Carcinog 49:944–950

    Article  PubMed  CAS  Google Scholar 

  14. Shao P, Ding Q, Qin C et al (2011) Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population. Prostate 71:1122–1130

    Article  PubMed  CAS  Google Scholar 

  15. Zhang W, Li C, Wang J, He C (2012) Functional polymorphisms in FAS/FASL system contribute to the risk of occurrence but not progression of gastric cardiac adenocarcinoma. Hepatogastroenterology 59:141–146

    Article  PubMed  CAS  Google Scholar 

  16. Zhang X, Miao X, Sun T et al (2005) Functional polymorphisms in cell death pathway genes Fas and FasL contribute to risk of lung cancer. J Med Genet 42:479–484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Scholl V, Stefanoff CG, Hassan R et al (2007) Spector N, Renault IZ. Mutations within the 5′ region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma. Leuk Lymphoma 48:957–963

    Article  PubMed  CAS  Google Scholar 

  18. Peter AM, Kohfink B, Martin H et al (1999) Defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T-cell lymphoma, and Hodgkin’s disease. Exp Hematol 27:868–874

    Article  Google Scholar 

  19. Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS (1997) Mutations in the Fas antigen in patients with multiple myeloma. Blood 90:4266–4270

    PubMed  CAS  Google Scholar 

  20. Farre L, Bittencourt AL, Silva-Santos G et al (2008) Fas 670 promoter polymorphism is associated to susceptibility, clinical presentation, and survival in adult T cell leukemia. J Leukoc Biol 83:220–222

    Article  PubMed  CAS  Google Scholar 

  21. Nair RR, Khanna A, Singh K (2012) Association of FAS −1377 G > A and FAS −670 A > G functional polymorphisms of FAS gene of cell death pathway with recurrent early pregnancy loss risk. J Reprod Immunol 93:114–118

    Article  PubMed  CAS  Google Scholar 

  22. Zhao XF, Reitz M, Chen QC, Stass S (2011) Pathogenesis of early leukemia and lymphoma. Cancer Biomark 9:341–374

    Google Scholar 

  23. Traver D, Akashi K, Weissman IL, Lagasse E (1998) Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 9:47–57

    Article  PubMed  CAS  Google Scholar 

  24. Chávez-Galán L, Arenas-Del Angel MC, Zenteno E et al (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6:15–25

    Article  PubMed  Google Scholar 

  25. Arasteh JM, Sarvestani EK, Aflaki E, Amirghofran Z (2010) Fas gene polymorphisms in systemic lupus erythematosus and serum levels of some apoptosis-related molecules. Immunol Investig 39:27–38

    Article  Google Scholar 

  26. Villa-Morales M, Fernández-Piqueras J (2012) Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets 16:85–101

    Article  PubMed  CAS  Google Scholar 

  27. Rozenfeld-Granot G, Toren A, Amariglio N (2001) Mutation analysis of the FAS and TNFR apoptotic cascade genes in hematological malignancies. Exp Hematol 29:228–233

    Article  PubMed  CAS  Google Scholar 

  28. Beltinger C, Kurz E, Böhler T (1998) CD95 (APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia. Blood 15:3943–3951

    Google Scholar 

  29. Beltinger C, Böhler T, Karawajew L et al (1998) Mutation analysis of CD95 (APO-1/Fas) in childhood B-lineage acute lymphoblastic leukaemia. Br J Haematol 102:722–728

    Article  PubMed  CAS  Google Scholar 

  30. Kim HJ, Jin XM, Kim HN et al (2010) Fas and FasL polymorphisms are not associated with acute myeloid leukemia risk in Koreans. DNA Cell Biol 29:619

    Article  PubMed  CAS  Google Scholar 

  31. Mehta PA, Gerbing RB, Alonzo TA et al (2008) FAS promoter polymorphism: outcome of childhood acute myeloid leukemia. A children’s oncology group report. Clin Cancer Res 1:7896–7899

    Article  CAS  Google Scholar 

  32. Amirghofran Z, Daneshbod Y, Gholijani N, Esmaeilbeig M (2011) The influence of Bcl-2 and myeloid antigen expression on response to therapy in childhood acute lymphoblastic leukemia. Arch Iran Med 14:170–174

    PubMed  Google Scholar 

  33. Amirghofran Z, Daneshbod Y, Gholijani N (2009) Bcl-2 in combination to myeloid antigen expression in adult acute lymphoblastic leukemia and prognostic outcome. Oncol Res 17:447–454

    Article  PubMed  Google Scholar 

  34. Fathi M, Amirghofran Z, Shahriari M (2012) Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia. Med Oncol 29:2046–2052

    Article  PubMed  CAS  Google Scholar 

  35. Sunter NJ, Scott K, Hills R et al (2012) A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood 5:196–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present article was supported by grant no. 90-01-3551 from Shiraz University of Medical Sciences.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Amirghofran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valibeigi, B., Amirghofran, Z., Golmoghaddam, H. et al. Fas Gene Variants in Childhood Acute Lymphoblastic Leukemia and Association with Prognosis. Pathol. Oncol. Res. 20, 367–374 (2014). https://doi.org/10.1007/s12253-013-9705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9705-2

Keywords

Navigation