Skip to main content

Advertisement

Log in

Rosai–Dorfman Disease Harboring an Activating KRAS K117N Missense Mutation

  • Case Report
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Rosai–Dorfman disease (RDD) or sinus histiocytosis with massive lymphadenopathy is a rare histiocytic proliferation that is generally considered to be reactive with a benign clinical course. The etiology of RDD is very poorly understood. Recent studies have shown frequent BRAF, NRAS, KRAS, and PIK3CA activating mutations in several histiocytic neoplasms highlighting the emerging importance of the RAF/MEK/ERK pathway in the pathogenesis of these diseases. Here we report a case of Rosai–Dorfman disease involving the submandibular salivary gland with a KRAS K117N missense mutation discovered by next-generation sequencing. These results suggest that at least a subset of RDD cases may be clonal processes. Further mutational studies on this rare histiocytic disease should be undertaken to better characterize its pathogenesis as well as open up potential avenues for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Swerdlow SH. WHO classification of tumours of haematopoietic and lymphoid tissues. Geneva: World Health Organization; 2008.

    Google Scholar 

  2. Weitzman S, Jaffe R. Uncommon histiocytic disorders: the non-Langerhans cell histiocytoses. Pediatr Blood Cancer. 2005;45(3):256–64. doi:10.1002/pbc2246.

    Article  PubMed  Google Scholar 

  3. Paulli M, Bergamaschi G, Tonon L, et al. Evidence for a polyclonal nature of the cell infiltrate in sinus histiocytosis with massive lymphadenopathy (Rosai–Dorfman disease). Br J Haematol. 1995;91(2):415–8.

    Article  CAS  PubMed  Google Scholar 

  4. Middel P, Hemmerlein B, Fayyazi A, Kaboth U, Radzun HJ. Sinus histiocytosis with massive lymphadenopathy: evidence for its relationship to macrophages and for a cytokine-related disorder. Histopathology. 1999;35(6):525–33.

    Article  CAS  PubMed  Google Scholar 

  5. Badalian-Very G, Vergilio J-A, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. doi:10.1182/blood-2010-04-279083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014;124(19):3007–15. doi:10.1182/blood-2014-05-577825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emile J-F, Diamond EL, Hélias-Rodzewicz Z, et al. Recurrent RAS and PIK3CA mutations in Erdheim–Chester disease. Blood. 2014;124(19):3016–9. doi:10.1182/blood-2014-04-570937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Go H, Jeon YK, Huh J, et al. Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology. 2014;65(2):261–72. doi:10.1111/his.12416.

    Article  PubMed  Google Scholar 

  9. Haroche J, Charlotte F, Arnaud L, et al. High prevalence of BRAF V600E mutations in Erdheim–Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3. doi:10.1182/blood-2012-05-430140.

    Article  CAS  PubMed  Google Scholar 

  10. Goodnight JW, Wang MB, Sercarz JA, Fu YS. Extranodal Rosai–Dorfman disease of the head and neck. Laryngoscope. 1996;106(3 Pt 1):253–6.

    Article  CAS  PubMed  Google Scholar 

  11. Güven G, Ilgan S, Altun C, Gerek M, Gunhan O. Rosai Dorfman disease of the parotid and submandibular glands: salivary gland scintigraphy and oral findings in two siblings. Dentomaxillofac Radiol. 2007;36(7):428–33. doi:10.1259/dmfr/39858276.

    Article  PubMed  Google Scholar 

  12. Hyman DM, Diamond EL, Vibat CRT, et al. Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders. Cancer Discov. 2015;5(1):64–71. doi:10.1158/2159-8290.CD-14-0742.

    Article  CAS  PubMed  Google Scholar 

  13. Chen T-D, Lee L. Rosai–Dorfman disease presenting in the parotid gland with features of IgG4-related sclerosing disease. Arch Otolaryngol Head Neck Surg. 2011;137(7):705–8. doi:10.1001/archoto.2011.52.

    Article  PubMed  Google Scholar 

  14. Dahlgren M, Smetherman DH, Wang J, Corsetti RL. Rosai–Dorfman disease of the breast and parotid gland. J La State Med Soc. 2008;160(1):35–8.

    PubMed  Google Scholar 

  15. Juskevicius R, Finley JL. Rosai–Dorfman disease of the parotid gland: cytologic and histopathologic findings with immunohistochemical correlation. Arch Pathol Lab Med. 2001;125(10):1348–50. doi:10.1043/0003-9985(2001)125<1348:RDDOTP>2.0.CO;2.

    CAS  PubMed  Google Scholar 

  16. Norman L, Bateman AC, Watters GW, Singh V, Spedding AV. Rosai–Dorfman disease presenting as a parotid mass. J Laryngol Otol. 1997;111(11):1091–3.

    Article  CAS  PubMed  Google Scholar 

  17. Dalia S, Sagatys E, Sokol L, Kubal T. Rosai–Dorfman disease: tumor biology, clinical features, pathology, and treatment. Cancer Control. 2014;21(4):322–7.

    PubMed  Google Scholar 

  18. Dion E, Graef C, Miquel A, et al. Bone involvement in Erdheim–Chester disease: imaging findings including periostitis and partial epiphyseal involvement. Radiology. 2006;238(2):632–9. doi:10.1148/radiol.2382041525.

    Article  PubMed  Google Scholar 

  19. Thawerani H, Sanchez RL, Rosai J, Dorfman RF. The cutaneous manifestations of sinus histiocytosis with massive lymphadenopathy. Arch Dermatol. 1978;114(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen-Barak E, Rozenman D, Schafer J, et al. An unusual co-occurrence of Langerhans cell histiocytosis and Rosai–Dorfman disease: report of a case and review of the literature. Int J Dermatol. 2014;53(5):558–63. doi:10.1111/ijd.12051.

    Article  PubMed  Google Scholar 

  21. O’Malley DP, Duong A, Barry TS, et al. Co-occurrence of Langerhans cell histiocytosis and Rosai–Dorfman disease: possible relationship of two histiocytic disorders in rare cases. Mod Pathol. 2010;23(12):1616–23. doi:10.1038/modpathol.2010.157.

    Article  PubMed  Google Scholar 

  22. Sachdev R, Shyama J. Co-existent Langerhans cell histiocytosis and Rosai–Dorfman disease: a diagnostic rarity. Cytopathology. 2008;19(1):55–8. doi:10.1111/j.1365-2303.2006.00428.x.

    CAS  PubMed  Google Scholar 

  23. Wang K-H, Cheng C-J, Hu C-H, Lee W-R. Coexistence of localized Langerhans cell histiocytosis and cutaneous Rosai–Dorfman disease. Br J Dermatol. 2002;147(4):770–4.

    Article  PubMed  Google Scholar 

  24. Pineles SL, Liu GT, Acebes X, et al. Presence of Erdheim–Chester disease and Langerhans cell histiocytosis in the same patient: a report of 2 cases. J Neuroophthalmol. 2011;31(3):217–23. doi:10.1097/WNO.0b013e31820a204e.

    Article  PubMed  Google Scholar 

  25. Venkataraman G, McClain KL, Pittaluga S, Rao VK, Jaffe ES. Development of disseminated histiocytic sarcoma in a patient with autoimmune lymphoproliferative syndrome and associated Rosai–Dorfman disease. Am J Surg Pathol. 2010;34(4):589–94. doi:10.1097/PAS.0b013e3181d5ddf8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agarwal A, Pathak S, Gujral S. Sinus histiocytosis with massive lymphadenopathy–a review of seven cases. Indian J Pathol Microbiol. 2006;49(4):509–15.

    PubMed  Google Scholar 

  27. Krzemieniecki K, Pawlicki M, Margañska K, Parczewska J. The Rosai–Dorfman syndrome in a 17-year-old woman with transformation into high-grade lymphoma. A rare disease presentation. Ann Oncol. 1996;7(9):977.

    Article  CAS  PubMed  Google Scholar 

  28. Zaletel K, Gaberšček S. Hashimoto’s thyroiditis: from genes to the disease. Curr Genomics. 2011;12(8):576–88. doi:10.2174/138920211798120763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim KH, Suh KS, Kang DW, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma and in Hashimoto’s thyroiditis. Pathol Int. 2005;55(9):540–5.

    Article  CAS  PubMed  Google Scholar 

  30. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98. doi:10.1056/NEJMoa1408617 (Epub 2014 Nov 26).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nelson DS, van Halteren A, Quispel WT, et al. MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54(6):361–8. doi:10.1002/gcc.22247.

    Article  CAS  PubMed  Google Scholar 

  32. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90. doi:10.1038/sj.onc.1210421.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11(7):385–400. doi:10.1038/nrclinonc.2014.83.

    Article  CAS  PubMed  Google Scholar 

  34. Diamond EL, Durham BH, Haroche J, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2015;. doi:10.1158/2159-8290.CD-15-0913.

    PubMed Central  Google Scholar 

  35. Smith G, Bounds R, Wolf H, Steele RJC, Carey FA, Wolf CR. Activating K-Ras mutations outwith “hotspot” codons in sporadic colorectal tumours–implications for personalised cancer medicine. Br J Cancer. 2010;102(4):693–703. doi:10.1038/sj.bjc.6605534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–86. doi:10.1038/ng.2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27. doi:10.1182/blood-2013-08-518886 (quiz 3699).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci Rep. 2015;5:8535. doi:10.1038/srep08535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su F, Bradley WD, Wang Q, et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res. 2012;72(4):969–78. doi:10.1158/0008-5472.CAN-11-1875.

    Article  CAS  PubMed  Google Scholar 

  40. Gatalica Z, Bilalovic N, Palazzo JP, et al. Disseminated histiocytoses biomarkers beyond BRAFV600E: frequent expression of PD-L1. Oncotarget. 2015;6(23):19819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carrasco DR, Fenton T, Sukhdeo K, et al. The PTEN and INK4A/ARF tumor suppressors maintain myelolymphoid homeostasis and cooperate to constrain histiocytic sarcoma development in humans. Cancer Cell. 2006;9(5):379–90. doi:10.1016/j.ccr.2006.03.028.

    Article  CAS  PubMed  Google Scholar 

  42. Hayase E, Kurosawa M, Yonezumi M, Suzuki S, Suzuki H. Aggressive sporadic histiocytic sarcoma with immunoglobulin heavy chain gene rearrangement and t(14;18). Int J Hematol. 2010;92(4):659–63. doi:10.1007/s12185-010-0704-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of all the staff of the Molecular Pathology Laboratory of New York Presbyterian Hospital/Weill Cornell Medicine in specimen processing and data collection. No major sources of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vignesh Shanmugam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

For this type of study formal consent is not required. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, V., Margolskee, E., Kluk, M. et al. Rosai–Dorfman Disease Harboring an Activating KRAS K117N Missense Mutation. Head and Neck Pathol 10, 394–399 (2016). https://doi.org/10.1007/s12105-016-0709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-016-0709-6

Keywords

Navigation