Skip to main content

Advertisement

Log in

Bridging the Gap between GPCR Activation and Behaviour: Oxytocin and Prolactin Signalling in the Hypothalamus

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuropeptides of the brain are important neuromodulators, controlling behaviour and physiology. They signal through G protein-coupled receptors (GPCR) that couple to complex intracellular signalling pathways. These signalling networks integrate information from multiple sources, resulting in appropriate physiological and behavioural responses to environmental and internal cues. This paper will focus on the neuropeptides oxytocin and prolactin with respect to (1) the regulation of neuroendocrine stress responses and anxiety, and (2) the receptor-mediated molecular mechanisms underlying these actions of the neuropeptides. Besides its significant reproductive functions when released into the bloodstream, brain oxytocin reduces the activity of the hypothalamo–pituitary–adrenal (HPA) axis as well as anxiety-related behaviour in male and female rats. Oxytocin mediates its anxiolytic effect, at least in part, via binding to its GPCR in the hypothalamic paraventricular nucleus, followed by transactivation of the epidermal growth factor receptor, and subsequent activation of a MEK–extracellular signal-regulated kinase (ERK) MAP kinase pathway. Prolactin, by binding to its GPCR receptors, of which there are short and long forms, also activates ERK, and this is necessary for the control of the expression of corticotrophin-releasing hormone—an important regulator of the HPA axis. Liganded oxytocin and prolactin may also recruit other signalling pathways, but how these pathways contribute to the observed behavioural and physiological effects remains to be established. GPCR-mediated oxytocin and prolactin neuronal signalling are illustrative of the complexity of GPCR-activated regulation of appropriate neuroendocrine and behavioural responses to environmental and physiological demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bakowska JC, Morrell JI (1997) Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol 386:161–177

    Article  CAS  PubMed  Google Scholar 

  • Bakowska JC, Morrell JI (2003) The distribution of mRNA for the short form of the prolactin receptor in the forebrain of the female rat. Mol Brain Res 116:50–58

    Article  CAS  PubMed  Google Scholar 

  • Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM (2001) CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci 21:2546–2552

    CAS  PubMed  Google Scholar 

  • Blume A, Bosch OJ, Miklos S et al (2008) Oxytocin reduces anxiety via ERK1⁄2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 27:1947–1956

    Article  PubMed  Google Scholar 

  • Blume A, Torner L, Liu Y, Subburaju S, Aguilera G, Neumann ID (2009a) Prolactin activates mitogen-activated protein kinase signaling and corticotropin releasing hormone transcription in rat hypothalamic neurons. Endocrinology 150:1841–1849

    Article  CAS  Google Scholar 

  • Blume A, Torner L, Liu Y, Subburaju S, Aguilera G, Neumann ID (2009b) Prolactin induces egr-1 gene expression in cultured hypothalamic cells and in the rat hypothalamus. Brain Res 1302:34–41

    Article  CAS  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA, Douglas AJ (2008) Adaptive responses of the maternal hypothalamic–pituitary–adrenal axis during pregnancy and lactation. J Neuroendocrinol 20:764–776

    Article  CAS  PubMed  Google Scholar 

  • Clapp C, Torner L, Guttiérrez-Ospina G et al (1994) The prolactin gene is expressed in the hypothalamic–neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Natl Acad Sci USA 91:10384–10388

    Article  CAS  PubMed  Google Scholar 

  • DeVito WJ (1988) Distribution of immunoreactive prolactin in the male and female rat brain: effects of hypophysectomy and intraventricular administration of colchicines. Neuroendocrinology 47:284–289

    Article  CAS  PubMed  Google Scholar 

  • DeVito WJ, Stone S, Avakian C (1991) Stimulation of hypothalamic prolactin release by veratridine and angiotensin II in the female rat: effect of ovariectomy and estradiol administration. Neuroendocrinology 54:391–398

    Article  CAS  PubMed  Google Scholar 

  • Devost D, Carrier ME, Zingg HH (2008) Oxytocin-induced activation of eukaryotic elongation factor 2 in myometrial cells is mediated by protein kinase C. Endocrinology 149:131–138

    Article  CAS  PubMed  Google Scholar 

  • Ditzen B, Schaer M, Gabriel B, Bodenmann G, Ehlert U, Heinrichs M (2009) Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry 65:728–731

    Article  CAS  PubMed  Google Scholar 

  • Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25:1804–1814

    Article  PubMed  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic–neurohypophysial system regulates the hypothalamic–pituitary–adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Soya H, Tamashiro KL et al (2004) Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat. Endocrinology 145:2006–2013

    Article  CAS  PubMed  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Phys Rev 81:629–683

    CAS  Google Scholar 

  • Goupille O, Barnier J-V, Guibert B, Paly J, Djiane J (2000) Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 159:133–146

    Article  CAS  PubMed  Google Scholar 

  • Gravati M, Busnelli M, Bulgheroni E et al (2010) Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem 114:1424–1435

    CAS  PubMed  Google Scholar 

  • Heinrichs M, Meinlschmidt G, Neumann I et al (2001) Effects of suckling on hypothalamic–pituitary–adrenal axis responses to psychosocial stress in postpartum lactating women. J Clin Endocrinol Metab 86:4798–4804

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Hoare S, Copland JA, Strakova Z et al (1999) The proximal portion of the COOH terminus of the oxytocin receptor is required for coupling to g(q), but not g(i). Independent mechanisms for elevating intracellular calcium concentrations from intracellular stores. J Biol Chem 274:28682–28689

    Article  CAS  PubMed  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248

    Article  CAS  PubMed  Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676

    Article  CAS  PubMed  Google Scholar 

  • Ku CY, Qian A, Wen Y, Anwer K, Sanborn BM (1995) Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11. Endocrinology 136:1509–1515

    Article  CAS  PubMed  Google Scholar 

  • Ladyman SR, Augustine RA, Grattan GR (2010) Hormone interactions regulating energy balance during pregnancy. J Neuroendocrinol 22:805–817

    CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176

    Article  CAS  PubMed  Google Scholar 

  • Larsen CM, Kokay IC, Grattan DR (2008) Male pheromones initiate prolactin-induced neurogenesis and advance maternal behavior in female mice. Horm Behav 53:509–517

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    Article  CAS  PubMed  Google Scholar 

  • Mak GK, Enwere EK, Gregg C et al (2007) Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci 10:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Mangurian LP, Walsh RJ, Posner BI (1992) Prolactin enhancement of its own uptake at the choroid plexus. Endocrinology 131:698–702

    Article  CAS  PubMed  Google Scholar 

  • Meddle SL, Bishop VR, Gkoumassi E, van Leeuwen FW, Douglas AJ (2007) Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology 148:5095–5104

    Article  CAS  PubMed  Google Scholar 

  • Muccioli G, Ghe C, Di Carlo R (1991) Distribution and characterization of prolactin binding sites in the male and female rat brain: effects of hypophysectomy and ovariectomy. Neuroendocrinology 53:47–53

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2001) Alterations in behavioral and neuroendocrine stress coping strategies in pregnant, parturient and lactating rats. Prog Brain Res 133:143–152

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2007) Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem Soc Trans 35:1252–1257

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2009) The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood. Front Neuroendocrinol 30:483–496

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Toschi N (2000) Sequence design and practical implementation of antisense oligonucleotides in neuroendocrinology. Methods Enzymol 314:223–238

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Russell JA, Landgraf R (1993) Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study. Neuroscience 53:65–75

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000a) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R (2000b) Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo–pituitary–adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol 12:235–243

    Article  CAS  PubMed  Google Scholar 

  • Pi X-J, Grattan DR (1998) Differential expression of the two forms of prolactin receptor mRNA within microdissected hypothalamic nuclei of the rat. Mol Brain Res 59:1–12

    Article  CAS  PubMed  Google Scholar 

  • Pi X-J, Grattan DR (1999a) Expression of prolactin receptor mRNA is increased in the preoptic area of lactating rats. Endocr 11:91–98

    Article  CAS  Google Scholar 

  • Pi X-J, Grattan DR (1999b) Increased prolactin receptor immunoreactivity in the hypothalamus of lactating rats. J Neuroendocrinol 11:693–705

    Article  CAS  PubMed  Google Scholar 

  • Ring RH, Malberg JE, Potestio L et al (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology 185:218–225

    Article  CAS  PubMed  Google Scholar 

  • Shingo T, Gregg C, Enwere E et al (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA, Neumann ID (2008) No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 586 (2):377–385

    Article  CAS  Google Scholar 

  • Strakova Z, Copland JA, Lolait SJ, Soloff MS (1998) ERK2 mediates oxytocin-stimulated PGE2 synthesis. Am J Physiol 274:E634–E641

    CAS  PubMed  Google Scholar 

  • Tomizawa K, Norichika I, Lu YF et al (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6:384–390

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Mejía S, López-Gómez FJ, Quintanar A, Martínez de la Escalera G, Clapp C (1995) A 14-kilodalton prolactin-like fragment is secreted by the hypothalamo–neurohypophyseal system of the rat. Endocrinology 136:5454–5460

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21:3207–3214

    CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389

    Article  PubMed  Google Scholar 

  • Torner L, Maloumby R, Nava G, Aranda J, Clapp C, Neumann ID (2004) In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. Eur J Neurosci 19:1601–1608

    Article  PubMed  Google Scholar 

  • Torner L, Karg S, Blume A et al (2009) Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29:1826–1833

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res 179:261–276

    Article  Google Scholar 

  • Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci USA 104:16681–16684

    Article  CAS  PubMed  Google Scholar 

  • Walsh RJ, Slaby FJ, Posner BI (1987) A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology 120:1846–1850

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Geselowitz D, Chavany C et al (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci USA 90:4665–4669

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behaviour in rats. Endocrinology 138:2829–2834

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD (2004) Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo–pituitary–adrenal activity. J Neurosci 24:2974–2982

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Takayanagi Y, Inoue K et al (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29:2259–2271

    Article  CAS  PubMed  Google Scholar 

  • Zhong M, Yang M, Sanborn BM (2003) Extracellular signal-regulated kinase 1 ⁄ 2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation. Endocrinology 144:2947–2956

    Article  CAS  PubMed  Google Scholar 

  • Zingg HH, Laporte SA (2003) The oxytocin receptor. Trends Endocrinol Metab 14:222–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. David Slattery for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin H. van den Burg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Burg, E.H., Neumann, I.D. Bridging the Gap between GPCR Activation and Behaviour: Oxytocin and Prolactin Signalling in the Hypothalamus. J Mol Neurosci 43, 200–208 (2011). https://doi.org/10.1007/s12031-010-9452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9452-8

Keywords

Navigation