Skip to main content
Log in

A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes

  • CANCER IMMUNOLOGY
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Chronic lymphocytic leukemia (CLL) is a clonal disease of B lymphocytes manifesting as an absolute lymphocytosis in the blood. However, not all lymphocytoses are leukemic. In addition, first-degree relatives of CLL patients have an ~15 % chance of developing a precursor condition to CLL termed monoclonal B cell lymphocytosis (MBL), and distinguishing CLL and MBL B lymphocytes from normal B cell expansions can be a challenge. Therefore, we selected FMOD, CKAP4, PIK3C2B, LEF1, PFTK1, BCL-2, and GPM6a from a set of genes significantly differentially expressed in microarray analyses that compared CLL cells with normal B lymphocytes and used these to determine whether we could discriminate CLL and MBL cells from B cells of healthy controls. Analysis with receiver operating characteristics and Bayesian relevance determination demonstrated good concordance with all panel genes. Using a random forest classifier, the seven-gene panel reliably distinguished normal polyclonal B cell populations from expression patterns occurring in pre-CLL and CLL B cell populations with an error rate of 2 %. Using Bayesian learning, the expression levels of only two genes, FMOD and PIK3C2B, correctly distinguished 100 % of CLL and MBL cases from normal polyclonal and mono/oligoclonal B lymphocytes. Thus, this study sets forth effective computational approaches that distinguish MBL/CLL from normal B lymphocytes. The findings also support the concept that MBL is a CLL precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M. Chronic Lymphocytic leukemia. N Engl J Med. 2005;352:804–15.

    Article  CAS  PubMed  Google Scholar 

  2. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50.

    CAS  PubMed  Google Scholar 

  3. Hallek M. Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015;90:446–60.

    Article  CAS  PubMed  Google Scholar 

  4. Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009;360:659–67.

    Article  CAS  PubMed  Google Scholar 

  5. Frezzato M, Giaretta I, Madeo D, Rodeghiero F. Identical IGHV-D-J gene rearrangement may precede the clinical onset of chronic lymphocytic leukemia by several years. Am J Hematol. 2010;85:868–71.

    Article  CAS  PubMed  Google Scholar 

  6. Rawstron AC, Green MJ, Kuzmicki A, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100:635–9.

    Article  CAS  PubMed  Google Scholar 

  7. Rawstron A, Hillmen P, Houlston R. Clonal lymphocytes in persons without known chronic lymphocytic leukemia (CLL): implications of recent findings in family members of CLL patients. Semin Hematol. 2004;41:192–200.

    Article  PubMed  Google Scholar 

  8. Ghia P, Prato G, Scielzo C, et al. Monoclonal CD5+ and CD5− B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood. 2004;103:2337–42.

    Article  CAS  PubMed  Google Scholar 

  9. Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.

    Article  CAS  PubMed  Google Scholar 

  10. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009. doi:10.3324/haematol.2008.003632

  11. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  CAS  PubMed  Google Scholar 

  12. Shanafelt TD, Kay NE, Jenkins G, et al. B-cell count and survival: Differentiating chronic lymphocytic leukemia (CLL) from monoclonal B-cell lymphocytosis (MBL) based on clinical outcome. Blood. 2008. doi:10.1182/blood-2008-09-176149.

  13. Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol. 2006;134:573–89.

    Article  CAS  PubMed  Google Scholar 

  14. Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood. 2011;117:1781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia. 2010;24:512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dono M, Burgio VL, Tacchetti C, et al. Subepithelial B cells in the human palatine tonsil. I. Morphologic, cytochemical and phenotypic characterization. Eur J Immunol. 1996;26:2035–42.

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001;98:31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hosmer DW, Lemeshow S. Applied logistic regression. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  19. Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. 2001;1:211–44.

    Google Scholar 

  20. Liaw A, Wiener M. Classification and regression by random forest. R News. 2002;2:18–22.

    Google Scholar 

  21. Jelinek DF, Tschumper RC, Stolovitzky GA, et al. Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003;1:346–61.

    CAS  PubMed  Google Scholar 

  22. Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007;117:112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics. 2005;21:3131–7.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Liu J, Niu YQ, Wang L, Hu X. A Bayesian regression approach to the prediction of MHC-II binding affinity. Comput Methods Programs Biomed. 2008;92:1–7.

    Article  PubMed  Google Scholar 

  27. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43:1947–58.

    Article  CAS  PubMed  Google Scholar 

  28. Marti G, Abbasi F, Raveche E, et al. Overview of monoclonal B-cell lymphocytosis. Br J Haematol. 2007;139:701–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shanafelt T, Hanson CA. Monoclonal B-cell lymphocytosis: definitions and natural history. Leuk Lymphoma. 2009;50:493–7.

    Article  PubMed  Google Scholar 

  30. Rossi D, Sozzi E, Puma A, De Paoli L, Rasi S, Spina V, Gozzetti A, Tassi M, Cencini E, Raspadori D, Pinto V, Bertoni F, Gattei V, Lauria F, Gaidano G, Forconi F. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol. 2009;146:64–75.

    Article  PubMed  Google Scholar 

  31. Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48.

    Article  CAS  PubMed  Google Scholar 

  33. Swets JA. ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol. 1979;14:109–21.

    Article  CAS  PubMed  Google Scholar 

  34. McNeil BJ, Hanley JA. Statistical approaches to the analysis of receiver operating characteristic (ROC) curves. Med Decis Mak. 1984;4:137–50.

    Article  CAS  Google Scholar 

  35. Morabito F, Mosca L, Cutrona G, et al. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: a comparison of cellular, cytogenetic, molecular, and clinical features. Clin Cancer Res. 2013;19:5890–900.

    Article  CAS  PubMed  Google Scholar 

  36. Mayr C, Bund D, Schlee M, et al. Fibromodulin as a novel tumor-associated antigen (TAA) in chronic lymphocytic leukemia (CLL), which allows expansion of specific CD8+ autologous T lymphocytes. Blood. 2005;105:1566–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hus I, Schmitt M, Tabarkiewicz J, et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia. 2008;22:1007–17.

    Article  CAS  PubMed  Google Scholar 

  38. Stephens L, Williams R, Hawkins P. Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol. 2005;5:357–65.

    Article  CAS  PubMed  Google Scholar 

  39. El Sheikh SS, Domin J, Tomtitchong P, Abel P, Stamp G, Lalani EN. Topographical expression of class IA and class II phosphoinositide 3-kinase enzymes in normal human tissues is consistent with a role in differentiation. BMC Clin Pathol. 2003;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, Falasca M. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol. 2005;169:789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Domin J, Harper L, Aubyn D, et al. The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol. 2005;205:452–62.

    Article  CAS  PubMed  Google Scholar 

  42. Wheeler M, Domin J. The N-terminus of phosphoinositide 3-kinase-C2beta regulates lipid kinase activity and binding to clathrin. J Cell Physiol. 2006;206:586–93.

    Article  CAS  PubMed  Google Scholar 

  43. Elis W, Triantafellow E, Wolters NM, et al. Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Mol Cancer Res. 2008;6:614–23.

    Article  CAS  PubMed  Google Scholar 

  44. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111:846–55.

    Article  CAS  PubMed  Google Scholar 

  45. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Srivastava S, Di L, Zhdanova O, et al. The class II phosphatidylinositol 3 kinase C2β is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. Mol Biol Cell. 2009;20:3783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai X, Srivastava S, Sun Y, et al. Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2β. Proc Natl Acad Sci USA. 2011;108:20072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marras E, Concari P, Cortellezzi L, Dondi D, De Eguileor M, Perletti G. Involvement of PI3K in PKCepsilon-mediated oncogenic signal in rat colonic epithelial cells. Int J Oncol. 2001;19:395–9.

    CAS  PubMed  Google Scholar 

  49. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101:4944–51.

    Article  CAS  PubMed  Google Scholar 

  50. Brown JR. Idelalisib for chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2014;12:846–8.

    PubMed  Google Scholar 

  51. Robak T, Robak P. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol. 2013;32:358–76.

    Article  CAS  PubMed  Google Scholar 

  52. Gutierrez A Jr, Tschumper RC, Wu X, et al. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood. 2010;116:2975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an RO-1 grant from the National Cancer Institute/NIH (CA081554) and by philanthropic contributions from The Karches Foundation, Marks Foundation, Jerome Levy Foundation, Leon Levy Foundation, and the Frank and Mildred Feinberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Chiorazzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 530 kb)

Supplementary material 2 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, B.A., Yancopoulos, S., Tipping, M. et al. A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol Res 63, 90–100 (2015). https://doi.org/10.1007/s12026-015-8688-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8688-3

Keywords

Navigation