Skip to main content
Log in

Therapeutic Biomarkers in Lung Neuroendocrine Neoplasia

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The well-known classification of neuroendocrine neoplasms of the lung into four major subtypes (including typical and atypical carcinoids and small- and large-cell neuroendocrine carcinomas) has a proven prognostic validity but only partially helps to predict the response to specific therapies. Therapeutic biomarkers are incompletely known and include morphological, immunophenotypic, and molecular markers. Morphology alone has no specific predictive role, nor has any immunophenotypic marker been proven to bear predictive implications. Ki67 is a relevant prognostic marker and can indirectly predict response to chemotherapy, when levels are extremely high in high-grade neuroendocrine (NE) carcinomas. The expression of somatostatin receptors, especially of the type 2A, has been shown to predict response to somatostatin analog treatments, paralleling the information derived from octreotide scintigraphy. mTOR pathway is targeted by specific inhibitors, but the exact cellular molecules predicting response are still to be defined. It seems that high levels of phosphorylated forms of mTOR and of its downstream factor S6K are associated to a better response to rapalogs in experimental models. Data from gene expression profiling and mutational analyses are currently emerging, providing a more detailed map of different molecular activation pathways, potentially leading to a more accurate molecular classification of lung NE tumors as well as to the discovery of new therapeutic targets. The combination of mutational profiles with those of upregulated or downregulated genes also by gene gains or losses may ultimately provide a better characterization of NE tumor histological types in terms of response to specific chemotherapy or biotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oberg K, Hellman P, Ferolla P, Papotti M Neuroendocrine bronchial and thymic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23 Suppl 7: vii120-123, 2012.

    PubMed  Google Scholar 

  2. Noel-Savina E, Descourt R Focus on treatment of lung carcinoid tumor. Onco Targets Ther 6: 1533–1537, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Moran CA, Suster S, Coppola D, Wick MR Neuroendocrine carcinomas of the lung: a critical analysis. Am J Clin Pathol 131: 206–221, 2009.

    Article  PubMed  Google Scholar 

  4. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC: Tumours of the Lung, Pleura, Thymus and Heart, Lyon: IARC Press, 2004.

    Google Scholar 

  5. Travis WD, Giroux DJ, Chansky K et al. The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. J Thorac Oncol 3: 1213–1223, 2008.

    Article  PubMed  Google Scholar 

  6. Sobin LH: TNM classification of malignant tumors, Oxford, 2009.

  7. Travis WD Advances in neuroendocrine lung tumors. Ann Oncol 21 Suppl 7: vii65-71, 2010

    PubMed  Google Scholar 

  8. Tsuta K, Raso MG, Kalhor N, Liu DD, Wistuba, II, Moran CA Histologic features of low- and intermediate-grade neuroendocrine carcinoma (typical and atypical carcinoid tumors) of the lung. Lung Cancer 71: 34–41, 2011.

    Article  PubMed  Google Scholar 

  9. Arrigoni MG, Woolner LB, Bernatz PE Atypical carcinoid tumors of the lung. J Thorac Cardiovasc Surg 64: 413–421, 1972.

    CAS  PubMed  Google Scholar 

  10. Travis WD, Rush W, Flieder DB et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 22: 934–944, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Travis WD, Linnoila RI, Tsokos MG et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 15: 529–553, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Iyoda A, Hiroshima K, Toyozaki T, Haga Y, Fujisawa T, Ohwada H Clinical characterization of pulmonary large cell neuroendocrine carcinoma and large cell carcinoma with neuroendocrine morphology. Cancer 91: 1992–2000, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Sturm N, Rossi G, Lantuejoul S et al. 34BetaE12 expression along the whole spectrum of neuroendocrine proliferations of the lung, from neuroendocrine cell hyperplasia to small cell carcinoma. Histopathology 42: 156–166, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Pelosi G, Rossi G, Cavazza A et al. DeltaNp63 (p40) distribution inside lung cancer: a driver biomarker approach to tumor characterization. Int J Surg Pathol 21: 229–239, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang SX, Kameya T, Asamura H et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol 17: 222–229, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Rekhtman N Neuroendocrine tumors of the lung: an update. Arch Pathol Lab Med 134: 1628–1638, 2010.

    PubMed  Google Scholar 

  17. La Rosa S, Chiaravalli AM, Placidi C, Papanikolaou N, Cerati M, Capella C TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 457: 497–507, 2010.

    Article  PubMed  Google Scholar 

  18. Tsuta K, Liu DC, Kalhor N, Wistuba, II, Moran CA Using the mitosis-specific marker anti-phosphohistone H3 to assess mitosis in pulmonary neuroendocrine carcinomas. Am J Clin Pathol 136: 252–259, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. Bosman F: Tumours of the Digestive Tract, Lyon: IARC Press, 2010.

    Google Scholar 

  20. Walts AE, Ines D, Marchevsky AM Limited role of Ki-67 proliferative index in predicting overall short-term survival in patients with typical and atypical pulmonary carcinoid tumors. Mod Pathol 25: 1258–1264, 2012.

    Article  PubMed  Google Scholar 

  21. Pelosi G, Rindi G, Travis WD, Papotti M Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol 9: 273–284, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Pelosi G, Rodriguez J, Viale G, Rosai J Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 29: 179–187, 2005.

    Article  PubMed  Google Scholar 

  23. Asamura H, Kameya T, Matsuno Y et al. Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 24: 70–76, 2006.

    Article  PubMed  Google Scholar 

  24. Costes V, Marty-Ane C, Picot MC et al. Typical and atypical bronchopulmonary carcinoid tumors: a clinicopathologic and KI-67-labeling study. Hum Pathol 26: 740–745, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Skov BG, Holm B, Erreboe A, Skov T, Mellemgaard A ERCC1 and Ki67 in small cell lung carcinoma and other neuroendocrine tumors of the lung: distribution and impact on survival. J Thorac Oncol 5: 453–459, 2010.

    Article  PubMed  Google Scholar 

  26. Grimaldi F, Muser D, Beltrami CA et al. Partitioning of bronchopulmonary carcinoids in two different prognostic categories by ki-67 score. Front Endocrinol (Lausanne) 2: 20, 2011.

    Google Scholar 

  27. Rindi G, Klersy C, Inzani F et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer 21: 1–16, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Travis WD Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod Pathol 25 Suppl 1: S18-30, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Pelosi G, Papotti M, Rindi G, Scarpa A Unraveling tumor grading and genomic landscape in lung neuroendocrine tumors. Endocrine Pathology, 2014.

  30. Swarts DR, Claessen SM, Jonkers YM et al. Deletions of 11q22.3-q25 are associated with atypical lung carcinoids and poor clinical outcome. Am J Pathol 179: 1129–1137, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Beasley MB, Lantuejoul S, Abbondanzo S et al. The P16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 34: 136–142, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. Swarts DR, Ramaekers FC, Speel EJ Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826: 255–271, 2012.

    CAS  PubMed  Google Scholar 

  33. Debelenko LV, Swalwell JI, Kelley MJ et al. MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosomes Cancer 28: 58–65, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Swarts DR, Scarpa A, Corbo V et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab 99: E374–378, 2014.

  35. Fernandez-Cuesta L, Peifer M, Lu X et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5: 3518, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tanca A, Addis MF, Pagnozzi D et al. Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. J Proteomics 74: 359–370, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Swarts DR, Henfling ME, Van Neste L et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res 19: 2197–2207, 2013.

    Article  CAS  PubMed  Google Scholar 

  38. Swarts DR, Van Neste L, Henfling ME et al. An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis 34: 2726–2737, 2013.

    Article  CAS  PubMed  Google Scholar 

  39. Rudin CM, Durinck S, Stawiski EW et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44: 1111–1116, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nakamura H, Tsuta K, Yoshida A et al. Aberrant anaplastic lymphoma kinase expression in high-grade pulmonary neuroendocrine carcinoma. J Clin Pathol 66: 705–707, 2013.

    Article  PubMed  Google Scholar 

  41. Odate S, Nakamura K, Onishi H et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer 79: 205–214, 2013.

    Article  PubMed  Google Scholar 

  42. Ceppi P, Volante M, Ferrero A et al. Thymidylate synthase expression in gastroenteropancreatic and pulmonary neuroendocrine tumors. Clin Cancer Res 14: 1059–1064, 2008.

    Article  CAS  PubMed  Google Scholar 

  43. Tsuta K, Wistuba, II, Moran CA Differential expression of somatostatin receptors 1–5 in neuroendocrine carcinoma of the lung. Pathol Res Pract 208: 470–474, 2012.

    Article  CAS  PubMed  Google Scholar 

  44. Righi L, Volante M, Tavaglione V et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 'clinically aggressive' cases. Ann Oncol 21: 548–555, 2010.

    Article  CAS  PubMed  Google Scholar 

  45. Ali G, Boldrini L, Capodanno A et al. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Ther Med 2: 787–792, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Righi L, Volante M, Rapa I et al. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 17: 977–987, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Pavel ME, Hainsworth JD, Baudin E et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378: 2005–2012, 2011.

    Article  CAS  PubMed  Google Scholar 

  48. Gagliano T, Bellio M, Gentilin E et al. mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr Relat Cancer 20: 463–475, 2013.

    Article  CAS  PubMed  Google Scholar 

  49. Bago-Horvath Z, Sieghart W, Grusch M et al. Synergistic effects of erlotinib and everolimus on bronchial carcinoids and large-cell neuroendocrine carcinomas with activated EGFR/AKT/mTOR pathway. Neuroendocrinology 96: 228–237, 2012.

    Article  CAS  PubMed  Google Scholar 

  50. Rossi G, Cavazza A, Marchioni A et al. Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung. J Clin Oncol 23: 8774–8785, 2005.

    Article  CAS  PubMed  Google Scholar 

  51. Iyoda A, Travis WD, Sarkaria IS et al. Expression profiling and identification of potential molecular targets for therapy in pulmonary large-cell neuroendocrine carcinoma. Exp Ther Med 2: 1041–1045, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Song J, Li M, Tretiakova M, Salgia R, Cagle PT, Husain AN Expression patterns of PAX5, c-Met, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 134: 1702–1705, 2010.

    PubMed Central  PubMed  Google Scholar 

  53. Voortman J, Harada T, Chang RP et al. Detection and therapeutic implications of c-Met mutations in small cell lung cancer and neuroendocrine tumors. Curr Pharm Des 19: 833–840, 2013.

    Article  CAS  PubMed  Google Scholar 

  54. Volante M, Brizzi MP, Faggiano A et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20: 1172–1182, 2007.

    Article  CAS  PubMed  Google Scholar 

  55. Miederer M, Seidl S, Buck A et al. Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging 36: 48–52, 2009.

    Article  CAS  PubMed  Google Scholar 

  56. Kulke MH, Hornick JL, Frauenhoffer C et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 15: 338–345, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Sodja E, Knez L, Kern I, Ovcaricek T, Sadikov A, Cufer T Impact of ERCC1 expression on treatment outcome in small-cell lung cancer patients treated with platinum-based chemotherapy. Eur J Cancer 48: 3378–3385, 2012.

    Article  CAS  PubMed  Google Scholar 

  58. Ceppi P, Longo M, Volante M et al. Excision repair cross complementing-1 and topoisomerase IIalpha gene expression in small-cell lung cancer patients treated with platinum and etoposide: a retrospective study. J Thorac Oncol 3: 583–589, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan) (IG number 13567 to MV). IR and SV are PhD fellows at the University of Turin, Doctorate School of Biomedical Sciences and Oncology. Presented in part at the Companion Meeting of the Endocrine Pathology Society st the USCAP annual meeting in San Diego, March 1, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Volante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righi, L., Volante, M., Rapa, I. et al. Therapeutic Biomarkers in Lung Neuroendocrine Neoplasia. Endocr Pathol 25, 371–377 (2014). https://doi.org/10.1007/s12022-014-9335-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-014-9335-6

Keywords

Navigation