Skip to main content
Log in

Increased Oxidant Stress and Decreased Antioxidant Status in Erythrocytes of Rats Fed with Zinc-deficient Diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the lipid peroxidation, nitric oxide (NO), and free radical scavenging enzyme activities in erythrocytes of zinc (Zn)-deficient rats and to investigate the relationship among these parameters in either group. Sixteen male rats with a weight of 40–50 g were used for the experiment. The rats were divided into control (n = 8) and Zn-deficient groups. At the end of the experiment, the animals were anesthetized with ketamine–HCl (Ketalar, 20 mg/kg−1, i.p.), and the blood was collected by cardiac puncture after thoracotomy. Blood samples were collected in vacutainer tubes without and with K3-EDTA as anticoagulant. Erythrocyte catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GRD), glutathione-S-transferase (GST), superoxide dismutase (SOD) activities, total (enzymatic plus nonenzymatic) superoxide scavenger activity (TSSA), nonenzymatic superoxide scavenger activity (NSSA), antioxidant potential (AOP), and serum zinc (Zn) values in the Zn-deficient group were significantly lower than those of the control group, whereas NO and malondialdehyde (MDA) levels were significantly higher than those of the control group. The results show that Zn deficiency causes a decrease in antioxidant defense system and an increase in oxidative stress in erythrocyte of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aktan B, Taysi S, Gumustekin K, Bakan N, Sutbeyaz Y (2003) Evaluation of oxidative stress in erythrocytes of the guinea pigs with experimental otitis media with effusion. Ann Clin Lab Sci 33(2):232–236

    PubMed  CAS  Google Scholar 

  2. Kamat JP, Devasagayam TPA (2000) Oxidative damage to mitochondria in normal and cancer tissues, and its modulation. Toxicology 155:73–82

    Article  PubMed  CAS  Google Scholar 

  3. Memisogullari R, Taysi S, Bakan E, Capoglu I (2003) Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem Funct 21:291–296

    Article  PubMed  CAS  Google Scholar 

  4. Taysi S, Polat F, Gul M, Sari RA, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204

    Article  PubMed  CAS  Google Scholar 

  5. Taysi S, Gul M, Sari RA, Akcay F, Bakan N (2002) Oxidant/antioxidant status in serum of patients with systemic lupus erythematosus. Clin Chem Lab Med 40(7):684–688

    Article  PubMed  CAS  Google Scholar 

  6. Taysi S, Kocer I, Memisogullari R, Kiziltunc A (2002) Serum oxidant/antioxidant status in serum of patients with Behçet’s disease. Ann Clin Lab Sci 32:377–382

    PubMed  CAS  Google Scholar 

  7. Polat MF, Taysi S, Gul M, Cikman O, Yilmaz I, Bakan E, Erdogan F (2002) Oxidant/antioxidant status in blood of patients with malignant breast tumour and benign breast disease. Cell Biochem Funct 20:327–331

    Article  PubMed  CAS  Google Scholar 

  8. Gul M, Demircan B, Taysi S, Oztasan N, Gumustekin K, Siktar E, Polat MF, Akar S, Akcay F, Dane S (2006) Effects of both endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp Biochem Physiol Part A Mol Integr Physiol 143(2):239–245

    Article  Google Scholar 

  9. Oztasan N, Taysi S, Gumustekin K, Altinkaynak K, Aktas O, Timur H, Siktar E, Keles S, Akar S, Akcay F, Dane S, Gul M (2004) Endurance training attenuates exercise-induced oxidative stress in erythrocytes in rat. Eur J Appl Physiol 91:622–627

    Article  PubMed  CAS  Google Scholar 

  10. Bakan N, Taysi S, Yılmaz O, Bakan E, Kuskay S, Uzun N, Gundogdu M (2003) Glutathione peroxidase, glutathione reductase, superoxide dismutase activities, glutathione, nitric oxide, and malondialdehyde levels in serum of patients with chronic lymphocytic leukaemia. Clin Chim Acta 338(1–2):143–149

    Article  PubMed  CAS  Google Scholar 

  11. Jenner A, Ren M, Rajendran R, Ning P, Huat BT, Watt F, Halliwell B (2007) Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic Biol Med 42(4):559–566

    Article  PubMed  CAS  Google Scholar 

  12. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 5:399–411

    Article  Google Scholar 

  13. Taysi S, Akcay F, Uslu C, Dogru Y, Gulcin I (2003) Trace elements and some extracellular antioxidant proteins levels in serum of patients with laryngeal cancer. Biol Trace Elem Res 91(1):11–18

    Article  PubMed  CAS  Google Scholar 

  14. Kaya H, Taysi S, Kaya A, Boyuk A, Dursun H, Islamoglu Y, Tastekin D, Cikman O (2008) Investigation of free radical scavenging enzyme activities and lipid peroxidation in liver tissue of zinc deficient rats. Asian J Chem 20(2):1068–1074

    Google Scholar 

  15. Durak I, Karabacak HI, Büyükkoçak S, Cimen MY, Kaçmaz M, Omeroglu E, Oztürk HS (1998) Impaired antioxidant defense system in the kidney tissues from rabbits treated with cyclosporine. Protective effects of vitamins E and C. Nephron 78:207–211

    Article  PubMed  CAS  Google Scholar 

  16. Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 19:1053–1057

    PubMed  CAS  Google Scholar 

  17. Durak I, Canpolat O, Kacmaz M, Ozgen G, Ozturk HS (1998) Antioxidant interferences in superoxide dismutase activity methods using superoxide radical as substrate. Clin Chem Lab Med 36:407–408

    Article  PubMed  CAS  Google Scholar 

  18. Paglia DE, Valentina WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  19. Pinto RE, Bartley W (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J 112:109–115

    PubMed  CAS  Google Scholar 

  20. Sen CK, Marin E, Kretzschmar M, Hänninen O (1992) Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73:1265–1272

    PubMed  CAS  Google Scholar 

  21. Aebi H (1974) Catalase In: Bergmeyer HU (ed) Methods of enzymatic analysis, chapter 2. Academic, New York, pp 673–678

    Google Scholar 

  22. Bories PN, Bories C (1995) Nitrate determination in biological fluids by an enzymatic one step assay with nitrate reductase. Clin Chem 41:904–907

    PubMed  CAS  Google Scholar 

  23. Fairbanks VF, Klee GG (1999) Biochemical aspects of hematology. In: Burtis CA, Ashwood ER (eds) Tietz textbook of clinical chemistry. Saunders, Philadelphia, pp 1990–2106

    Google Scholar 

  24. Memon AU, Kazi TG, Afridi HI, Jamali MK, Arain MB, Jalbani N, Syed N (2007) Evaluation of zinc status in whole blood and scalp hair of female cancer patients. Clin Chim Acta 379(1–2):66–70

    Article  PubMed  CAS  Google Scholar 

  25. Bakan E, Taysi S, Polat MF, Dalga S, Umudum Z, Bakan N, Gumus M (2002) Nitric oxide levels and lipid peroxidation in plasma of patients with gastric cancer. Jpn J Clin Oncol 32(5):162–166

    Article  PubMed  Google Scholar 

  26. Shaheen AA, el-Fattah AA (1995) Effect of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues. Int J Biochem Cell Biol 27(1):89–95

    Article  PubMed  CAS  Google Scholar 

  27. Kraus A, Roth HP, Kirchgessner M (1997) Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats. J Nutr 127(7):1290–1296

    PubMed  CAS  Google Scholar 

  28. Eby GA (2007) Zinc treatment prevents dysmenorrhea. Med Hypotheses 69(2):297–301

    Article  PubMed  CAS  Google Scholar 

  29. Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31(4):971–997

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyithan Taysi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taysi, S., Cikman, O., Kaya, A. et al. Increased Oxidant Stress and Decreased Antioxidant Status in Erythrocytes of Rats Fed with Zinc-deficient Diet. Biol Trace Elem Res 123, 161–167 (2008). https://doi.org/10.1007/s12011-008-8095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8095-x

Keywords

Navigation