Skip to main content

Advertisement

Log in

Clinical Imaging of Bone Microarchitecture with HR-pQCT

  • Imaging (T Lang, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. NIH Consensus Development Panel on Osteoporosis Prevention DAT. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Article  Google Scholar 

  2. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  3. Bolotin HH. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone. 2007;41:138–54.

    Article  PubMed  Google Scholar 

  4. Stone KL, Seeley DG, Lui L, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res. 2003;18:1947–54.

    Article  PubMed  Google Scholar 

  5. Müller R, Rüegsegger P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys. 1995;17:126–33.

    Article  PubMed  Google Scholar 

  6. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.

    Article  PubMed  Google Scholar 

  7. Rosen C. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington DC: American Society of Bone and Mineral Research; 2009.

    Google Scholar 

  8. Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin N Am. 2010;48:601–21.

    Article  PubMed  Google Scholar 

  9. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469:2179–93.

    Google Scholar 

  10. Boyd SK. Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom. 2008;11:424–30.

    Article  PubMed  Google Scholar 

  11. Burrows M, Liu D, Moore S, McKay H. Bone microstructure at the distal tibia provides a strength advantage to males in late puberty: an hr-pqct study. J Bone Miner Res. 2010;25:1423–32.

    PubMed  Google Scholar 

  12. Burrows M, Liu D, Perdios A, et al. Assessing bone microstructure at the distal radius in children and adolescents using hr-pqct: a methodological pilot study. J Clin Densitom. 2010;13:451–5.

    Article  PubMed  Google Scholar 

  13. Kirmani S, Christen D, van Lenthe GH, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24:1033–42.

    Article  PubMed  Google Scholar 

  14. Liu D, Burrows M, Egeli D, McKay H. Site specificity of bone architecture between the distal radius and distal tibia in children and adolescents: an hr-pqct study. Calcif Tissue Int. 2010;87:314–23.

    Article  PubMed  Google Scholar 

  15. Laib A, Häuselmann HJ, Rüegsegger P. In vivo high resolution 3D-QCT of the human forearm. Technol Health Care. 1998;6:329–37.

    PubMed  Google Scholar 

  16. Davis K, Burghardt A, Link T, Majumdar S. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2007;81:364–71.

    Article  PubMed  Google Scholar 

  17. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal abmd: an in vivo hr-pqct study. J Bone Miner Res. 2010;25:882–90.

    PubMed  Google Scholar 

  18. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-ct bone analysis. Bone. 2007;41:505–15.

    Article  PubMed  Google Scholar 

  19. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by hr-pqct. Bone. 2010;47:519–28.

    Article  PubMed  Google Scholar 

  20. Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal hr-pqct study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25:2558–71.

    Article  PubMed  Google Scholar 

  21. Burghardt AJ, Kazakia GJ, Link TM, Majumdar S. Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2009;20:2017–24.

    Article  PubMed  Google Scholar 

  22. Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185:67–75.

    Article  Google Scholar 

  23. Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2007;23:223–35.

    Article  Google Scholar 

  24. Liu XS, Cohen A, Shane E, et al. Individual trabeculae segmentation (ITS)—based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res. 2010;25:1496–505.

    Article  PubMed  Google Scholar 

  25. Hildebrand T, Rüegsigger P. Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng. 1997;1:15–23.

    Article  Google Scholar 

  26. Sode M, Burghardt AJ, Nissenson RA, Majumdar S. Resolution dependence of the non-metric trabecular structure indices. Bone. 2008;42:728–36.

    Article  PubMed  Google Scholar 

  27. Liu XS, Zhang XH, Sekhon KK, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25:746–56.

    PubMed  Google Scholar 

  28. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29:1096–105.

    Article  PubMed  Google Scholar 

  29. Cohen A, Dempster DW, Müller R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21:263–73.

    Article  PubMed  Google Scholar 

  30. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90:6508–15.

    Article  PubMed  Google Scholar 

  31. Kazakia GJ, Hyun B, Burghardt AJ, et al. In vivo determination of bone structure in postmenopausal women: a comparison of hr-pqct and high-field MR imaging. J Bone Miner Res. 2007;23:463–74.

    Article  Google Scholar 

  32. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21:124–31.

    Article  PubMed  Google Scholar 

  33. MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30:792–9.

    Article  PubMed  Google Scholar 

  34. Mueller TL, Stauber M, Kohler T, et al. Non-invasive bone competence analysis by high-resolution pqct: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone. 2009;44:364–71.

    Article  PubMed  Google Scholar 

  35. Burghardt AJ, Pialat JB, Kazakia GJ, et al. Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J Bone Miner Res. 2012;28:524–36.

    Google Scholar 

  36. Zebaze R, Seeman E, Mbala A, et al. Patent: method and system for image analysis of selected tissue structures. WO/2011/029153 2011.

  37. MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42:1203–13.

    Article  PubMed  Google Scholar 

  38. Bourne BC, van Der Meulen MCH. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen ct-attenuation. J Biomech. 2004;37:613–22.

    Article  PubMed  Google Scholar 

  39. Van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 1995;28:69–81.

    Article  PubMed  Google Scholar 

  40. Dalzell N, Kaptoge S, Morris N, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pqct. Osteoporos Int. 2009;20:1683–94.

    Article  PubMed  Google Scholar 

  41. • Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based hr-pqct study. J Bone Miner Res. 2011;26:50–62. Population-based study of 644 men and women with HR-pQCT and FEA highlighting the site- and sex-specific differences in age-related bone loss. Women had less periosteal expansion, more porous cortices, and greater load on cortex, which may underpin the sex differences in fracture risk.

    Article  PubMed  Google Scholar 

  42. Sode M, Burghardt AJ, Kazakia GJ, Link TM, Majumdar S. Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone. 2010;46:1652–60.

    Article  PubMed  Google Scholar 

  43. Kazakia GJ, Nirody JA, Bernstein G, et al. Age- and gender-related differences in cortical geometry and microstructure: improved sensitivity by regional analysis. Bone. 2013;52:623–31.

    Article  PubMed  Google Scholar 

  44. Schnackenburg KE, Macdonald HM, Ferber R, Wiley JP, Boyd SK. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc. 2011;43:2110–9.

    Article  PubMed  Google Scholar 

  45. Binkovitz LA, Henwood MJ, Sparke P. Pediatric DXA: technique, interpretation and clinical applications. Pediatr Radiol. 2008;38 Suppl 2Suppl 2:S227–39.

    Google Scholar 

  46. Wang Q, Wang XF, Iuliano-Burns S, et al. Rapid growth produces transient cortical weakness. A risk factor for metaphyseal fractures during puberty. J Bone Miner Res. 2010;25:1521–6.

    Article  PubMed  Google Scholar 

  47. Nishiyama KK, Macdonald HM, Moore SA, et al. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an hr-pqct study. J Bone Miner Res. 2011;27:273–82.

    Article  Google Scholar 

  48. Walsh JS, Paggiosi MA, Eastell R. Cortical consolidation of the radius and tibia in young men and women. J Clin Endocrinol Metab. 2012;97:3342–8.

    Article  PubMed  Google Scholar 

  49. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Fractures during childhood and adolescence in healthy boys: relation with bone mass, microstructure, and strength. J Clin Endocrinol Metab. 2011;96:3134–42.

    Article  PubMed  Google Scholar 

  50. Wang XF, Wang Q, Ghasem-Zadeh A, et al. Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and White women. J Bone Miner Res. 2009;24:1946–52.

    Article  PubMed  Google Scholar 

  51. Walker MD, Liu XS, Stein E, et al. Differences in bone microarchitecture between postmenopausal Chinese-American and White women. J Bone Miner Res. 2011;26:1392–8.

    Article  PubMed  Google Scholar 

  52. Walker MD, Liu XS, Zhou B, et al. Pre- and postmenopausal differences in bone microstructure and mechanical competence in Chinese-American and White women. J Bone Miner Res. 2013. doi:10.1002/jbmr.1860.

  53. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24:737–43.

    Article  PubMed  Google Scholar 

  54. Melton LJ, Riggs BL, Keaveny TM, et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;25:1922–30.

    Article  PubMed  Google Scholar 

  55. Vilayphiou N, Boutroy S, Sornay-Rendu E, et al. Finite element analysis performed on radius and tibia hr-pqct images and fragility fractures at all sites in postmenopausal women. Bone. 2010;46:1030–7.

    Article  PubMed  Google Scholar 

  56. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22:425–33.

    Article  PubMed  Google Scholar 

  57. Melton LJ, Riggs BL, van Lenthe GH, et al. Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res. 2007;22:1442–8.

    Article  PubMed  Google Scholar 

  58. Boutroy S, Van Rietbergen B, Sornay-Rendu E, et al. Finite element analysis based on in vivo hr-pqct images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008;23:392–9.

    Article  PubMed  Google Scholar 

  59. Vico L, Zouch M, Amirouche A, et al. High-resolution pqct analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res. 2008;23:1741–50.

    Article  PubMed  Google Scholar 

  60. Stein EM, Liu XS, Nickolas TL, et al. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res. 2010;25:2572–81.

    Article  PubMed  Google Scholar 

  61. Nishiyama K, Macdonald M, Hanley A, Boyd K. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with hr-pqct. Osteoporos Int. 2012. doi:10.1007/s00198-012-2160-1.

  62. Liu XS, Stein EM, Zhou B, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of hr-pqct images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27:263–72.

    Article  PubMed  Google Scholar 

  63. • Stein EM, Liu XS, Nickolas TL, et al. Microarchitectural abnormalities are more severe in postmenopausal women with vertebral compared with nonvertebral fractures. J Clin Endocrinol Metab. 2012;97:E1918–26. Women with and without fracture were compared and microarchitecture parameters and novel ITS measurements by HR-pQCT discriminated the fracture status independently of aBMD by DXA.

    Article  PubMed  Google Scholar 

  64. Atkinson EJ, Therneau TM, Melton LJ, et al. Assessing fracture risk using gradient boosting machine (GBM) models. J Bone Miner Res. 2012;27:1397–404.

    Article  Google Scholar 

  65. Szulc P, Boutroy S, Vilayphiou N, et al. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res. 2011;26:1358–67.

    Article  PubMed  Google Scholar 

  66. Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia hr-pqct images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26:965–73.

    Article  PubMed  Google Scholar 

  67. Ostertag A, Collet C, Chappard C, et al. A case–control study of fractures in men with idiopathic osteoporosis: fractures are associated with older age and low cortical bone density. Bone. 2013;52:48–55.

    Article  PubMed  Google Scholar 

  68. Graeff C, Marin F, Petto H, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52:568–77.

    Article  PubMed  Google Scholar 

  69. Hansen S, Beck Jensen J-E, Rasmussen L, Hauge EM, Brixen K. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using hr-pqct. J Bone Miner Res. 2010;25:1941–7.

    Article  PubMed  Google Scholar 

  70. Stein EM, Silva BC, Boutroy S, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2012. doi:10.1002/jbmr.1841.

  71. Nickolas TL, Stein E, Cohen A, et al. Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol. 2010;21:1371–80.

    Article  PubMed  Google Scholar 

  72. Trombetti A, Stoermann C, Chevalley T, et al. Alterations of bone microstructure and strength in end-stage renal failure. Osteoporos Int. 2012. doi:10.1007/s00198-012-2133-4.

  73. Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:5045–55.

    Article  PubMed  Google Scholar 

  74. Shu A, Yin MT, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int. 2011;23:635–41.

    Article  PubMed  Google Scholar 

  75. Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2012;28:313–24.

    Google Scholar 

  76. Folkestad L, Hald JD, Hansen S, et al. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pqct. J Bone Miner Res. 2012;27:1405–12.

    Article  PubMed  Google Scholar 

  77. Ackerman KE, Nazem T, Chapko D, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96:3123–33.

    Article  PubMed  Google Scholar 

  78. Bredella MA, Lin E, Gerweck AV, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab. 2012;97:4115–22.

    Article  PubMed  Google Scholar 

  79. Stein EM, Carrelli A, Young P, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98:514–9.

    Google Scholar 

  80. • Seeman E, Delmas PD, Hanley DA, et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25:1886–94. Double-blind, multisite longitudinal study with alendronate and denosumab treated patients found microarchitecture parameters by HR-pQCT declined in the placebo group while alendronate prevented the decline and denosumab prevented decline or improved the structure.

    Article  PubMed  Google Scholar 

  81. Rizzoli R, Laroche M, Krieg MA, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int. 2010;30:1341–8.

    Article  PubMed  Google Scholar 

  82. • Rizzoli R, Chapurlat RD, Laroche JM, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int. 2012;23:305–15. Randomized double-blind trial of strontium ranelate and alendronate and HR-pQCT outcomes. With strontium ranelate there was an increase in Ct.Th, Ct.BMD, and BV/TV at the tibia while alendronate maintained bone microstructure.

    Article  PubMed  Google Scholar 

  83. Chapurlat RD, Laroche M, Thomas T, et al. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial. Osteoporos Int. 2013;24:311–20.

    Article  PubMed  Google Scholar 

  84. Chavassieux P, Karsdal MA, Segovia-Silvestre T, et al. Mechanisms of the anabolic effects of teriparatide on bone: insight from the treatment of a patient with pycnodysostosis. J Bone Miner Res. 2008;23:1076–83.

    Article  PubMed  Google Scholar 

  85. Hansen S, Hauge EM, Jensen J-EB, Brixen K. Differing effects of PTH 1–34, PTH 1–84 and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis. An 18 month open-labeled observational study using hr-pqct. J Bone Miner Res. 2012. doi:10.1002/jbmr.1784.

  86. Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int. 2010;22:357–62.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

K Nishiyama declares no conflicts of interest and E Shane declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Shane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, K.K., Shane, E. Clinical Imaging of Bone Microarchitecture with HR-pQCT. Curr Osteoporos Rep 11, 147–155 (2013). https://doi.org/10.1007/s11914-013-0142-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0142-7

Keywords

Navigation