Skip to main content
Log in

Current diagnostic techniques in the evaluation of bone architecture

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone quality, which encompasses trabecular bone and cortical bone architecture, bone mineralization, turnover, and microdamage, is an essential component of bone strength. Therefore, bone quality, bone density, and total content are the most important parameters in the diagnosis of osteoporosis. Noninvasive assessment of bone quality has recently received considerable attention because bone density alone is not a surrogate for fracture prevalence and occurrence, and does not completely explain the therapeutic efficacy of emerging treatments. This paper will focus on the noninvasive assessment of trabecular bone architecture, one of the factors that governs bone strength and may be categorized as a contributor to bone quality. The methodologies described will include magnetic resonance imaging, clinical multislice spiral computed tomography, and micro-computed tomography, along with computerized analysis of radiographic patterns of trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cortet B, Dubois P, Boutry N, et al.: Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 1999, 9:410–419.

    Article  PubMed  CAS  Google Scholar 

  2. Cortet B, Bourel P, Dubois P, et al.: CT scan texture analysis of the distal radius: influence of age and menopausal status. Rev Rhum Engl Ed 1998, 65:109–118.

    PubMed  CAS  Google Scholar 

  3. Link TM, Majumdar S, Lin JC, et al.: A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 1998, 13:122–132.

    Article  PubMed  CAS  Google Scholar 

  4. Jiang Y, Zhao J, Augat P, et al.: Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 1998, 13:1783–1790.

    Article  PubMed  CAS  Google Scholar 

  5. Muller R, Hahn M, Vogel M, et al.: Morphometric analysis of non-invasively assessed biopsies: comparisons of high resolution QCT and histologic sections. Twenty-fourth Internationl Sun Valley Workshop on Hard Tissue Biology. Sun Valley, ID, 1993.

  6. Goldstein SA, Goulet R, McCubbrey D: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 1993, 53(Suppl 1):S127–132 ; discussion S132-133.

    Article  PubMed  Google Scholar 

  7. Halloran BP, Ferguson VL, Simske SJ, et al.: Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 2002, 17:1044–1050.

    Article  PubMed  Google Scholar 

  8. Lane NE, Haupt D, Kimmel DB, et al.: Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J Bone Miner Res 1999, 14:206–214.

    Article  PubMed  CAS  Google Scholar 

  9. Lane NE, Thompson JM, Strewler GJ, Kinney JH: Intermittent treatment with human parathyroid hormone (hPTH[1-34]) increased trabecular bone volume but not connectivity in osteopenic rats. J Bone Miner Res 1995, 10:1470–1477.

    PubMed  CAS  Google Scholar 

  10. Borah B, Dufresne TE, Cockman MD, et al.: Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res 2000, 15:1786–1797.

    Article  PubMed  CAS  Google Scholar 

  11. Barou O, Valentin D, Vico L, et al.: High-resolution threedimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol 2002, 37:40–46.

    Article  PubMed  Google Scholar 

  12. Muller R, Hildebrand T, Ruegsegger P: Non-invasive bone biopsy: a new method to analyze and display three dimensional structure of trabecular bone. Phys Med Biol 1994, 39:145–164.

    Article  PubMed  CAS  Google Scholar 

  13. Muller R, Hahn M, Vogel M, et al.: Morphometric analysis of non-invasively assessed bone biopsies: comparison of high resolution computed tomography and histologic sections. Bone 1996, 8:215–220.

    Article  Google Scholar 

  14. Muller R, Hildebrand T, Hauselmann HJ, Ruesegger P: In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 1996, 11:1745–1750.

    Article  PubMed  CAS  Google Scholar 

  15. Majumdar S, Genant HK, Grampp S, et al.: Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 1997, 12:111–118.

    Article  PubMed  CAS  Google Scholar 

  16. Majumdar S, Link TM, Augat P, et al.: Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporos Int 1999, 10:231–239.

    Article  PubMed  CAS  Google Scholar 

  17. Newitt DC, Van Rietbergen B, Majumdar S: Processing and analysis of in vivo high resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 2002, 13:278–287. The authors proved that structure parameters characterizing trabecular bone architecture can be determined with good precision in highresolution MRI images, which is extremely important for longitudinal studies. Using an automated system including coil inhomogeneity correction and image alignment, a reproducibility of 2% to 3% is found for two-dimensional structural parameters while three-dimensional mechanical parameters vary by 4% to 9%.

    Article  PubMed  CAS  Google Scholar 

  18. Newitt DC, Majumdar S, Van Rietbergen B, et al.: In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 2002, 13:6–13.

    Article  PubMed  CAS  Google Scholar 

  19. Saha PK, Gomberg BR, Wehrli FW: Three-dimensional digital topological characterization of cancellous bone architecture. Int J Imag Syst Tech 2000, 11:81–90.

    Article  Google Scholar 

  20. Newitt DC, Lin JC, Wald LL, et al.: High resolution MRI of the human calcaneus in vivo using phased array surface coils. Proceedings of the 4th Annual Meeting of the ISMRM. New York: 1996:400.

  21. Engelke K, Hahn M, Takada M, et al.: Structural analysis of high resolution MR images of the calcaneus compared to histomorphometry. In Am Soc Bone Miner Res Sept. 7–11, Seattle, WA. Edited by Drezner M. Oxford:Blackwell Science, Inc.; 1996:S474.

    Google Scholar 

  22. Link T, Majumdar S, Augat P, et al.: Can texture analysis of high resolution MR-images of the calcaneus be used to differentiate post-menopausal patients with and without osteoporotic fractures? Osteoporos Int 1997, 7:271.

    Google Scholar 

  23. Link TM, Majumdar S, Augat P, et al.: In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998, 13:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  24. Vieth V, Link TM, Lotter A, et al.: Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 2001, 36:210–217. It was demonstrated in this paper that trabecular bone structure, as depicted by high-resolution MRI, predicts the true bone structure. However, limitations are also noted which may be amended with advances in MRI hardware and software.

    Article  PubMed  CAS  Google Scholar 

  25. Kuehn B, Stampa B, Heller M, Glueer C: In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 1997, 7:291.

    Google Scholar 

  26. Jara H, Wehrli FW, Chung H, Ford JC: High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 1993, 29:528–539.

    Article  PubMed  CAS  Google Scholar 

  27. Stampa B, Kuhn B, Liess C, et al.: Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo. Top Magn Reson Imaging 2002, 13:357–363.

    Article  PubMed  Google Scholar 

  28. Laib A, Newitt DC, Lu Y, Majumdar S: New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 2002, 3:130–136.

    Article  Google Scholar 

  29. Hwang SN, Wehrli FW, Williams JL: Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 1997, 24:1255–1261.

    Article  PubMed  CAS  Google Scholar 

  30. Majumdar S, Genant HK, Grampp S, et al.: Analysis of trabecular bone structure in the distal radius using high resolution MRI. Eur Radiol 1994, 4:517–524.

    Article  Google Scholar 

  31. Majumdar S, Newitt D, Mathur A, et al.: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 1996, 6:376–385.

    Article  PubMed  CAS  Google Scholar 

  32. Wehrli FW, Hwang SN, Ma J, et al.: Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 1998, 206:347–357.

    PubMed  CAS  Google Scholar 

  33. van Rietbergen B, Majumdar S, Newitt D, MacDonald B: Highresolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 2002, 17:81–88.

    Article  Google Scholar 

  34. Link TM, Lotter A, Beyer F, et al.: Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology 2000, 217:855–862. This study showed for the first time that MRI structure measures may be more useful than bone mineral density in assessing patients with organ transplants. Structure measures were better suited than bone mineral density in differentiating patients with and without osteoporotic spine fractures.

    PubMed  CAS  Google Scholar 

  35. Benito M, Gomberg B, Wehrli FW, et al.: Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003, 88:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  36. Beuf O, Ghosh S, Newitt DC, et al.: Characterization of trabecular bone micoarchitecture in the knee in osteoarthrosis using high-resolution MRI. Proceedings of the 8th Annual Meeting of the ISMRM. Denver: 2000:2135.

  37. Link T, Saborowski S, Kisters K, et al.: Changes in calcaneal trabecular bone structure assessed with high resolution MRI in patients with kidney transplantation. Osteoporos Int 2002, 13:119–129.

    Article  PubMed  CAS  Google Scholar 

  38. Majumdar S, Link T, Ouyang J, et al.: Fractal analysis of radiographs: comparison of techniques and correlation with BMD and biomechanics. J Bone Miner Res 1997, 12:S264.

    Article  Google Scholar 

  39. Ouyang X, Majumdar S, Link TM, et al.: Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. Med Phys 1998, 25:2037–2045.

    Article  PubMed  CAS  Google Scholar 

  40. Majumdar S, Lin J, Link T, et al.: Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 1999, 26:1330–1334.

    Article  PubMed  CAS  Google Scholar 

  41. Lin JC, Grampp S, Link T, et al.: Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 1999, 9:516–524.

    PubMed  CAS  Google Scholar 

  42. Caligiuri P, Giger ML, Favus M: Multifractal radiographic analysis of osteoporosis. Med Phys 1994, 21:503–508.

    Article  PubMed  CAS  Google Scholar 

  43. Caligiuri P, Giger M, Favus M, et al.: Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 1993, 186:471–474.

    PubMed  CAS  Google Scholar 

  44. Pothuaud L, Lespessailles E, Harba R, et al.: Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998, 8:618–625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, T.M., Majumdar, S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep 2, 47–52 (2004). https://doi.org/10.1007/s11914-004-0003-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-004-0003-5

Keywords

Navigation