Skip to main content

Advertisement

Log in

Advances in meningioma therapy

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Meningiomas are the most common primary brain tumors in adults. Most of them are benign (World Health Organization [WHO] grade I), slow-growing lesions, but some are classified as atypical (WHO grade II) or malignant (WHO grade III). Surgical resection is curative when complete removal of a benign meningioma is possible. Incompletely resected tumors and high-grade lesions are frequently treated with fractionated radiotherapy or stereotactic radiosurgery. Radiotherapy effectively reduces recurrence rates with limited toxicity. High-grade meningiomas tend to recur following maximal treatment with surgery and radiation. Chemotherapeutic agents, including hydroxyurea, have been used for recurrent disease with marginal efficacy. As the molecular pathogenesis of meningiomas is elucidated, targeted drug therapies may prove useful. Angiogenesis inhibitors, agents that target fundamental cell signaling pathways, somatostatin analogues, and a variety of other molecular treatments appear promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Central Brain Tumor Registry of the United States: Statistical Report: Primary Brain Tumors in the United States, 2000–2004. Available at http://www.cbtrus.org/reports//2007-2008/2007report.pdf. Accessed February 11, 2009.

  2. Meningeal tumors. In WHO Classification of Tumors. Tumors of the Nervous System. Edited by Kleihues P, Cavenee WK. Lyon, France: IARC; 2000:175–196.

  3. Yang SY, Park CK, Park SH, et al.: Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry 2008, 79:574–580.

    Article  PubMed  Google Scholar 

  4. Lamszus K: Meningioma pathology, genetics, and biology. J Neuropathol Exp Neurol 2004, 63:275–286.

    PubMed  Google Scholar 

  5. Krayenbuhl N, Pravdenkova S, Al-Mefty O: De novo versus transformed atypical and anaplastic meningiomas: comparisons of clinical course, cytogenetics, cytokinetics, and outcome. Neurosurgery 2007, 61:495–503; discussion 503–494.

    Article  PubMed  Google Scholar 

  6. Pasquier D, Bijmolt S, Veninga T, et al.: Atypical and malignant meningioma: outcome and prognostic factors in 119 irradiated patients. A multicenter, retrospective study of the Rare Cancer Network. Int J Radiat Oncol Biol Phys 2008, 71:1388–1393.

    PubMed  Google Scholar 

  7. Ruttledge MH, Sarrazin J, Rangaratnam S, et al.: Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 1994, 6:180–184.

    Article  PubMed  CAS  Google Scholar 

  8. Simon M, Bostrom JP, Hartmann C: Molecular genetics of meningiomas: from basic research to potential clinical applications. Neurosurgery 2007, 60:787–798; discussion 787–798.

    Article  PubMed  Google Scholar 

  9. Hansson CM, Buckley PG, Grigelioniene G, et al.: Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics 2007, 8:16.

    Article  PubMed  CAS  Google Scholar 

  10. Striedinger K, VandenBerg SR, Baia GS, et al.: The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 2008, 10:1204–1212.

    PubMed  CAS  Google Scholar 

  11. Hanemann CO: Magic but treatable? Tumours due to loss of merlin. Brain 2008, 131:606–615.

    Article  PubMed  CAS  Google Scholar 

  12. Wozniak K, Piaskowski S, Gresner SM, et al.: BCR expression is decreased in meningiomas showing loss of heterozygosity of 22q within a new minimal deletion region. Cancer Genet Cytogenet 2008, 183:14–20.

    Article  PubMed  CAS  Google Scholar 

  13. Perry A, Cai DX, Scheithauer BW, et al.: Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 2000, 59:872–879.

    PubMed  CAS  Google Scholar 

  14. Gerber MA, Bahr SM, Gutmann DH: Protein 4.1B/differentially expressed in adenocarcinoma of the lung-1 functions as a growth suppressor in meningioma cells by activating Rac1-dependent c-Jun-NH(2)-kinase signaling. Cancer Res 2006, 66:5295–5303.

    Article  PubMed  CAS  Google Scholar 

  15. Ketter R, Rahnenfuhrer J, Henn W, et al.: Correspondence of tumor localization with tumor recurrence and cytogenetic progression in meningiomas. Neurosurgery 2008, 62:61–69; discussion 69–70.

    Article  PubMed  Google Scholar 

  16. Ketter R, Urbschat S, Henn W, et al.: Application of oncogenetic trees mixtures as a biostatistical model of the clonal cytogenetic evolution of meningiomas. Int J Cancer 2007, 121:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  17. Pfisterer WK, Hendricks WP, Scheck AC, et al.: Fluorescent in situ hybridization and ex vivo 1H magnetic resonance spectroscopic examinations of meningioma tumor tissue: is it possible to identify a clinically-aggressive subset of benign meningiomas? Neurosurgery 2007, 61:1048–1059; discussion 1060–1041.

    Article  PubMed  Google Scholar 

  18. Maillo A, Orfao A, Espinosa AB, et al.: Early recurrences in histologically benign/grade I meningiomas are associated with large tumors and coexistence of monosomy 14 and del(1p36) in the ancestral tumor cell clone. Neuro Oncol 2007, 9:438–446.

    Article  PubMed  Google Scholar 

  19. Claus EB, Park PJ, Carroll R, et al.: Specific genes expressed in association with progesterone receptors in meningioma. Cancer Res 2008, 68:314–322.

    Article  PubMed  CAS  Google Scholar 

  20. Baia GS, Stifani S, Kimura ET, et al.: Notch activation is associated with tetraploidy and enhanced chromosomal instability in meningiomas. Neoplasia 2008, 10:604–612.

    PubMed  CAS  Google Scholar 

  21. Keller A, Ludwig N, Backes C, et al.: Genome wide expression profiling identifies specific deregulated pathways in meningioma. Int J Cancer 2009, 124:346–351.

    Article  PubMed  CAS  Google Scholar 

  22. Martinez-Glez V, Franco-Hernandez C, Rey JA: Microarray gene expression profiling in meningiomas and schwannomas. Curr Med Chem 2008, 15:826–833.

    Article  PubMed  CAS  Google Scholar 

  23. Aarhus M, Bruland O, Bredholt G, et al.: Microarray analysis reveals down-regulation of the tumour suppressor gene WWOX and up-regulation of the oncogene TYMS in intracranial sporadic meningiomas. J Neurooncol 2008, 88:251–259.

    Article  PubMed  CAS  Google Scholar 

  24. Krupp W, Holland H, Koschny R, et al.: Genome-wide genetic characterization of an atypical meningioma by single-nucleotide polymorphism array-based mapping and classical cytogenetics. Cancer Genet Cytogenet 2008, 184:87–93.

    Article  PubMed  CAS  Google Scholar 

  25. Bethke L, Murray A, Webb E, et al.: Comprehensive analysis of DNA repair gene variants and risk of meningioma. J Natl Cancer Inst 2008, 100:270–276.

    Article  PubMed  CAS  Google Scholar 

  26. Rajaraman P, Wang SS, Rothman N, et al.: Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev 2007, 16:1655–1661.

    Article  PubMed  CAS  Google Scholar 

  27. Marosi C, Hassler M, Roessler K, et al.: Meningioma. Crit Rev Oncol Hematol 2008, 67:153–171.

    Article  PubMed  Google Scholar 

  28. Simpson D: The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 1957, 20:22–39.

    Article  PubMed  CAS  Google Scholar 

  29. Black PM, Morokoff AP, Zauberman J: Surgery for extra-axial tumors of the cerebral convexity and midline. Neurosurgery 2008, 62:1115–1121; discussion 1121–1113.

    Article  PubMed  Google Scholar 

  30. Butte PV, Pikul BK, Hever A, et al.: Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J Biomed Opt 2005, 10:064026.

    Google Scholar 

  31. Gay E, Vuillez JP, Palombi O, et al.: Intraoperative and postoperative gamma detection of somatostatin receptors in bone-invasive en plaque meningiomas. Neurosurgery 2005, 57:107–113; discussion 107–113.

    Article  PubMed  Google Scholar 

  32. Morofuji Y, Matsuo T, Hayashi Y, et al.: Usefulness of intraoperative photodynamic diagnosis using 5-aminolevulinic acid for meningiomas with cranial invasion: technical case report. Neurosurgery 2008, 62:102–103; discussion 103–104.

    Article  PubMed  Google Scholar 

  33. Jaaskelainen J: Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 1986, 26:461–469.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson WD, Loredo LN, Slater JD: Surgery and radiotherapy: complementary tools in the management of benign intracranial tumors. Neurosurg Focus 2008, 24:E2.

    Article  PubMed  Google Scholar 

  35. Nakamura M, Roser F, Michel J, et al.: Volumetric analysis of the growth rate of incompletely resected intracranial meningiomas. Zentralbl Neurochir 2005, 66:17–23.

    Article  PubMed  CAS  Google Scholar 

  36. Zeidman LA, Ankenbrandt WJ, Du H, et al.: Growth rate of non-operated meningiomas. J Neurol 2008, 255:891–895.

    Article  PubMed  CAS  Google Scholar 

  37. Goyal LK, Suh JH, Mohan DS, et al.: Local control and overall survival in atypical meningioma: a retrospective study. Int J Radiat Oncol Biol Phys 2000, 46:57–61.

    Article  PubMed  CAS  Google Scholar 

  38. Rogers L, Mehta M: Role of radiation therapy in treating intracranial meningiomas. Neurosurg Focus 2007, 23:E4.

    Article  PubMed  Google Scholar 

  39. Milker-Zabel S, Zabel-du Bois A, Huber P, et al.: Intensity-modulated radiotherapy for complex-shaped meningioma of the skull base: long-term experience of a single institution. Int J Radiat Oncol Biol Phys 2007, 68:858–863.

    PubMed  Google Scholar 

  40. Debus J, Wuendrich M, Pirzkall A, et al.: High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol 2001, 19:3547–3553.

    PubMed  CAS  Google Scholar 

  41. Elia AE, Shih HA, Loeffler JS: Stereotactic radiation treatment for benign meningiomas. Neurosurg Focus 2007, 23:E5.

    Article  PubMed  Google Scholar 

  42. Torres RC, Frighetto L, De Salles AA, et al.: Radiosurgery and stereotactic radiotherapy for intracranial meningiomas. Neurosurg Focus 2003, 14:E5.

    Article  PubMed  Google Scholar 

  43. Chamberlain MC: Adjuvant combined modality therapy for malignant meningiomas. J Neurosurg 1996, 84:733–736.

    PubMed  CAS  Google Scholar 

  44. Muhr C, Gudjonsson O, Lilja A, et al.: Meningioma treated with interferon-alpha, evaluated with [(11)C]-l-methionine positron emission tomography. Clin Cancer Res 2001, 7:2269–2276.

    PubMed  CAS  Google Scholar 

  45. Chamberlain MC, Tsao-Wei DD, Groshen S: Temozolomide for treatment-resistant recurrent meningioma. Neurology 2004, 62:1210–1212.

    PubMed  CAS  Google Scholar 

  46. de Robles P, McIntyre J, Kalra S, et al.: Methylation status of MGMT gene promoter in meningiomas. Cancer Genet Cytogenet 2008, 187:25–27.

    Article  PubMed  CAS  Google Scholar 

  47. Chamberlain MC, Tsao-Wei DD, Groshen S: Salvage chemotherapy with CPT-11 for recurrent meningioma. J Neurooncol 2006, 78:271–276.

    Article  PubMed  CAS  Google Scholar 

  48. Newton HB: Hydroxyurea chemotherapy in the treatment of meningiomas. Neurosurg Focus 2007, 23:E11.

    Article  PubMed  Google Scholar 

  49. Smith JS, Lal A, Harmon-Smith M, et al.: Association between absence of epidermal growth factor receptor immunoreactivity and poor prognosis in patients with atypical meningioma. J Neurosurg 2007, 106:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  50. Wen PY, Yung WKA, Lamborn K, et al.: Phase II study of imatinib mesylate (STI571) for patients with recurrent meningiomas (NABTC 01-08) [abstract]. Neuro Oncol 2006, 8:454.

    Google Scholar 

  51. Gupta V, Samuleson CG, Su S, Chen TC: Nelfinavir potentiation of imatinib cytotoxicity in meningioma cells via survivin inhibition. Neurosurg Focus 2007, 23:E9.

    Article  PubMed  Google Scholar 

  52. Lusis EA, Chicoine MR, Perry A: High throughput screening of meningioma biomarkers using a tissue microarray. J Neurooncol 2005, 73:219–223.

    Article  PubMed  CAS  Google Scholar 

  53. Crombet T, Torres O, Rodriguez V, et al.: Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001, 20:131–136.

    Article  PubMed  CAS  Google Scholar 

  54. Johnson M, Toms S: Mitogenic signal transduction pathways in meningiomas: novel targets for meningioma chemotherapy? J Neuropathol Exp Neurol 2005, 64:1029–1036.

    Article  PubMed  CAS  Google Scholar 

  55. Kerbel RS: Tumor angiogenesis. N Engl J Med 2008, 358:2039–2049.

    Article  PubMed  CAS  Google Scholar 

  56. Lamszus K, Lengler U, Schmidt NO, et al.: Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy. Neurosurgery 2000, 46:938–947; discussion 947–938.

    Article  PubMed  CAS  Google Scholar 

  57. Kan P, Liu JK, Wendland MM, et al.: Peritumoral edema after stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development. J Neurooncol 2007, 83:33–38.

    Article  PubMed  Google Scholar 

  58. Provias J, Claffey K, delAguila L, et al.: Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 1997, 40:1016–1026.

    Article  PubMed  CAS  Google Scholar 

  59. Barresi V, Cerasoli S, Vitarelli E, Tuccari G: Density of microvessels positive for CD105 (endoglin) is related to prognosis in meningiomas. Acta Neuropathol 2007, 114:147–156.

    Article  PubMed  CAS  Google Scholar 

  60. Kaley T, Wen P, Karimi S, et al.: Phase II trial of sunitinib (SU011248) in patients with recurrent or inoperable meningioma [abstract]. Neuro Oncol 2008, 10:817.

    Google Scholar 

  61. Deboer R, Grimm S, Chandler J, et al.: A phase II trial of PTK787/ZK 222584 in recurrent or progressive meningioma [abstract]. Neuro Oncol 2008, 10:824.

    Google Scholar 

  62. Klaeboe L, Lonn S, Scheie D, et al.: Incidence of intracranial meningiomas in Denmark, Finland, Norway and Sweden, 1968–1997. Int J Cancer 2005, 117:996–1001.

    Article  PubMed  CAS  Google Scholar 

  63. Schoenberg BS, Christine BW, Whisnant JP: Nervous system neoplasms and primary malignancies of other sites. The unique association between meningiomas and breast cancer. Neurology 1975, 25:705–712.

    PubMed  CAS  Google Scholar 

  64. Blitshteyn S, Crook JE, Jaeckle KA: Is there an association between meningioma and hormone replacement therapy? J Clin Oncol 2008, 26:279–282.

    Article  PubMed  CAS  Google Scholar 

  65. Claus EB, Black PM, Bondy ML, et al.: Exogenous hormone use and meningioma risk: what do we tell our patients? Cancer 2007, 110:471–476.

    Article  PubMed  Google Scholar 

  66. Gazzeri R, Galarza M, Gazzeri G: Growth of a meningioma in a transsexual patient after estrogen-progestin therapy. N Engl J Med 2007, 357:2411–2412.

    Article  PubMed  CAS  Google Scholar 

  67. Custer B, Longstreth WT Jr, Phillips LE, et al.: Hormonal exposures and the risk of intracranial meningioma in women: a population-based case-control study. BMC Cancer 2006, 6:152.

    Article  PubMed  CAS  Google Scholar 

  68. Wigertz A, Lonn S, Hall P, et al.: Reproductive factors and risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev 2008, 17:2663–2670.

    Article  PubMed  Google Scholar 

  69. Goodwin JW, Crowley J, Eyre HJ, et al.: A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neurooncol 1993, 15:75–77.

    Article  PubMed  CAS  Google Scholar 

  70. Grunberg SM, Rankin C, Townsend J, et al.: Phase III double-blind randomized placebo-controlled study of mifepristone (RU) for the treatment of unresectable meningioma [abstract]. Proc ASCO 2001, 20:222.

    Google Scholar 

  71. McCutcheon IE, Flyvbjerg A, Hill H, et al.: Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J Neurosurg 2001, 94:487–492.

    PubMed  CAS  Google Scholar 

  72. Drake WM, Grossman AB, Hutson RK: Effect of treatment with pegvisomant on meningioma growth in vivo. Eur J Endocrinol 2005, 152:161–162.

    Article  PubMed  CAS  Google Scholar 

  73. Arena S, Barbieri F, Thellung S, et al.: Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity. J Neurooncol 2004, 66:155–166.

    Article  PubMed  Google Scholar 

  74. Chamberlain MC, Glantz MJ, Fadul CE: Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology 2007, 69:969–973.

    Article  PubMed  CAS  Google Scholar 

  75. Bruns C, Lewis I, Briner U, et al.: SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 2002, 146:707–716.

    Article  PubMed  CAS  Google Scholar 

  76. Dziuk TW, Woo S, Butler EB, et al.: Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol 1998, 37:177–188.

    Article  PubMed  CAS  Google Scholar 

  77. Goldsmith BJ, Wara WM, Wilson CB, Larson DA: Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 1994, 80:195–201.

    Article  PubMed  CAS  Google Scholar 

  78. Harris AE, Lee JY, Omalu B, et al.: The effect of radiosurgery during management of aggressive meningiomas. Surg Neurol 2003, 60:298–305; discussion 305.

    Article  PubMed  Google Scholar 

  79. Ojemann SG, Sneed PK, Larson DA, et al.: Radiosurgery for malignant meningioma: results in 22 patients. J Neurosurg 2000, 93(Suppl 3):62–67.

    PubMed  Google Scholar 

  80. Stafford SL, Pollock BE, Foote RL, et al.: Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 2001, 49:1029–1037; discussion 1037–1028.

    Article  PubMed  CAS  Google Scholar 

  81. Chamberlain MC, Glantz MJ: Interferon-alpha for recurrent World Health Organization grade 1 intracranial meningiomas. Cancer 2008, 113:2146–2151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norden, A.D., Drappatz, J. & Wen, P.Y. Advances in meningioma therapy. Curr Neurol Neurosci Rep 9, 231–240 (2009). https://doi.org/10.1007/s11910-009-0034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0034-5

Keywords

Navigation