Skip to main content

Advertisement

Log in

Antibiotic-Induced Neurotoxicity

  • Central Nervous System Infections (J Lyons, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Antibiotic neurotoxicity is rare but can cause significant morbidity when it occurs. The risk of antibiotic neurotoxicity appears to be highest in patients who are older, have impaired renal function, or have preexisting neurologic conditions. This review describes the clinical features of the most common antibiotic toxicities affecting the nervous system: seizures, encephalopathy, optic neuropathy, peripheral neuropathy, and exacerbation of myasthenia gravis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Frytak S, Moertel CH, Childs DS. Neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med. 1978;88:361–2.

    Article  CAS  PubMed  Google Scholar 

  2. Maw G, Aitken P. Isoniazid overdose: a case series, literature review and survey of antidote availability. Clin Drug Investig. 2003;23:479–85.

    Article  CAS  PubMed  Google Scholar 

  3. Grøndahl TO, Langmoen IA. Epileptogenic effect of antibiotic drugs. J Neurosurg. 1993;78:938–43.

    Article  PubMed  Google Scholar 

  4. Lode H. Potential interactions of the extended-spectrum fluoroquinolones with the CNS. Drug Saf Int J Med Toxicol Drug Exp. 1999;21:123–35.

    Article  CAS  Google Scholar 

  5. Linden P. Safety profile of meropenem: an updated review of over 6,000 patients treated with meropenem. Drug Saf Int J Med Toxicol Drug Exp. 2007;30:657–68.

    Article  CAS  Google Scholar 

  6. Arcieri GM, Becker N, Esposito B, Griffith E, Heyd A, Neumann C, et al. Safety of intravenous ciprofloxacin. A review. Am J Med. 1989;87:92S–7S.

    Article  CAS  PubMed  Google Scholar 

  7. Yagawa K. Latest industry information on the safety profile of levofloxacin in Japan. Chemotherapy. 2001;47 Suppl 3:38–43. discussion 44–48.

    Article  CAS  PubMed  Google Scholar 

  8. Moellering Jr RC, Eliopoulos GM, Sentochnik DE. The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother. 1989;24(Suppl A):1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Cannon JP, Lee TA, Clark NM, Setlak P, Grim SA. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother 2014

  10. Schliamser SE, Cars O, Norrby SR. Neurotoxicity of beta-lactam antibiotics: predisposing factors and pathogenesis. J Antimicrob Chemother. 1991;27:405–25.

    Article  CAS  PubMed  Google Scholar 

  11. Lerner PI, Smith H, Weinstein L. Penicillin neurotoxicity. Ann N Y Acad Sci. 1967;145:310–8.

    Article  CAS  PubMed  Google Scholar 

  12. Chang Y-M. Cefepime-induced nonconvulsive status epilepticus as a cause of confusion in an elderly patient: a case report. J Formos Med Assoc Taiwan Yi Zhi 2013

  13. Towne AR, Waterhouse EJ, Boggs JG, Garnett LK, Brown AJ, Smith JR, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54:340–5.

    Article  CAS  PubMed  Google Scholar 

  14. Holtkamp M, Meierkord H. Nonconvulsive status epilepticus: a diagnostic and therapeutic challenge in the intensive care setting. Ther Adv Neurol Disord. 2011;4:169–81.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mancl EE, Gidal BE. The effect of carbapenem antibiotics on plasma concentrations of valproic acid. Ann Pharmacother. 2009;43:2082–7.

    Article  CAS  PubMed  Google Scholar 

  16. Spriet I, Goyens J, Meersseman W, Wilmer A, Willems L, Van Paesschen W. Interaction between valproate and meropenem: a retrospective study. Ann Pharmacother. 2007;41:1130–6.

    Article  CAS  PubMed  Google Scholar 

  17. Gu J, Huang Y. Effect of concomitant administration of meropenem and valproic acid in an elderly Chinese patient. Am J Geriatr Pharmacother. 2009;7:26–33.

    Article  PubMed  Google Scholar 

  18. Rose JQ, Choi HK, Schentag JJ, Kinkel WR, Jusko WJ. Intoxication caused by interaction of chloramphenicol and phenytoin. J Am Med Assoc. 1977;237:2630–1.

    Article  CAS  Google Scholar 

  19. O’Connor NK, Fris J. Clarithromycin-carbamazepine interaction in a clinical setting. J Am Board Fam Pract. 1994;7:489–92.

    PubMed  Google Scholar 

  20. Tagawa T, Mimaki T, Ono J, Tanaka J, Suzuki Y, Itagaki T, et al. Erythromycin-induced carbamazepine intoxication in two epileptic children. Jpn J Psychiatr Neurol. 1989;43:513–4.

    CAS  Google Scholar 

  21. Block SH. Carbamazepine-isoniazid interaction. Pediatrics. 1982;69:494–5.

    CAS  PubMed  Google Scholar 

  22. Maldonado JR. Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin. 2008;24:657–722. vii.

    Article  CAS  PubMed  Google Scholar 

  23. Bischoff A, Meier C, Roth F. Gentamicin neurotoxicity (polyneuropathy–encephalopathy). Schweiz Med Wochenschr. 1977;107:3–8.

    CAS  PubMed  Google Scholar 

  24. Fletcher J, Aykroyd LE, Feucht EC, Curtis JM. Early onset probable linezolid-induced encephalopathy. J Neurol. 2010;257:433–5.

    Article  CAS  PubMed  Google Scholar 

  25. Saidinejad M, Ewald MB, Shannon MW. Transient psychosis in an immune-competent patient after oral trimethoprim-sulfamethoxazole administration. Pediatrics. 2005;115:e739–741.

    Article  PubMed  Google Scholar 

  26. Cooper GS, Blades EW, Remler BF, Salata RA, Bennert KW, Jacobs GH. Central nervous system Whipple’s disease: relapse during therapy with trimethoprim-sulfamethoxazole and remission with cefixime. Gastroenterology. 1994;106:782–6.

    CAS  PubMed  Google Scholar 

  27. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72:381–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kuriyama A, Jackson JL, Doi A, Kamiya T. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34:241–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bandettini di Poggio M, Anfosso S, Audenino D, Primavera A. Clarithromycin-induced neurotoxicity in adults. J Clin Neurosci Off J Neurosurg Soc Australas. 2011;18:313–8.

    CAS  Google Scholar 

  30. Sharma P, Sharma R. Toxic optic neuropathy. Indian J Ophthalmol. 2011;59:137–41.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Melamud A, Kosmorsky GS, Lee MS. Ocular ethambutol toxicity. Mayo Clin Proc. 2003;78:1409–11.

    Article  PubMed  Google Scholar 

  32. Samarakoon N, Harrisberg B, Ell J. Ciprofloxacin-induced toxic optic neuropathy. Clin Exp Ophthalmol. 2007;35:102–4.

    Article  Google Scholar 

  33. Das S, Mondal S. Oral levofloxacin-induced optic neuritis progressing in loss of vision. Ther Drug Monit. 2012;34:124–5.

    Article  PubMed  Google Scholar 

  34. Godel V, Nemet P, Lazar M. Chloramphenicol optic neuropathy. Arch Ophthalmol. 1980;98:1417–21.

    Article  CAS  PubMed  Google Scholar 

  35. McGrath NM, Kent-Smith B, Sharp DM. Reversible optic neuropathy due to metronidazole. Clin Exp Ophthalmol. 2007;35:585–6.

    Article  Google Scholar 

  36. Van Stavern GP. Metabolic, hereditary, traumatic, and neoplastic optic neuropathies. Continuum (Minneap Minn). 2014;20:877–906.

    Google Scholar 

  37. Lessell S. Histopathology of experimental ethambutol intoxication. Invest Ophthalmol Vis Sci. 1976;15:765–9.

    CAS  PubMed  Google Scholar 

  38. Choi SY, Hwang JM. Optic neuropathy associated with ethambutol in Koreans. Korean J Ophthalmol. 1997;11:106–10.

    Article  CAS  PubMed  Google Scholar 

  39. Javaheri M, Khurana RN, O’hearn TM, Lai MM, Sadun AA. Linezolid-induced optic neuropathy: a mitochondrial disorder? Br J Ophthalmol. 2007;91:111–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rucker JC, Hamilton SR, Bardenstein D, Isada CM, Lee MS. Linezolid-associated toxic optic neuropathy. Neurology. 2006;66:595–8.

    Article  CAS  PubMed  Google Scholar 

  41. Weimer LH, Sachdev N. Update on medication-induced peripheral neuropathy. Curr Neurol Neurosci Rep. 2009;9:69–75.

    Article  CAS  PubMed  Google Scholar 

  42. Manji H. Drug-induced neuropathies. Handb Clin Neurol. 2013;115:729–42.

    Article  PubMed  Google Scholar 

  43. Pratt RW, Weimer LH. Medication and toxin-induced peripheral neuropathy. Semin Neurol. 2005;25:204–16.

    Article  PubMed  Google Scholar 

  44. Hobson-Webb LD, Roach ES, Donofrio PD. Metronidazole: newly recognized cause of autonomic neuropathy. J Child Neurol. 2006;21:429–31.

    PubMed  Google Scholar 

  45. Saqueton AC, Lorincz AL, Vick NA, Hamer RD. Dapsone and peripheral motor neuropathy. Arch Dermatol. 1969;100:214–7.

    Article  CAS  PubMed  Google Scholar 

  46. Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy. 2007;27:1189–97.

    Article  CAS  PubMed  Google Scholar 

  47. Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, et al. Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57:3903–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sotgiu G, Centis R, D’Ambrosio L, Alffenaar J-WC, Anger HA, Caminero JA, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40:1430–42.

    Article  CAS  PubMed  Google Scholar 

  49. Boyce EG, Cookson ET, Bond WS. Persistent metronidazole-induced peripheral neuropathy. DICP Ann Pharmacother. 1990;24:19–21.

    CAS  Google Scholar 

  50. Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect Dis. 2004;4:528–31.

    Article  PubMed  Google Scholar 

  51. Rhodes LE, Coleman MD, Lewis-Jones MS. Dapsone-induced motor peripheral neuropathy in pemphigus foliaceus. Clin Exp Dermatol. 1995;20:155–6.

    Article  CAS  PubMed  Google Scholar 

  52. Dalakas MC. Peripheral neuropathy and antiretroviral drugs. J Peripher Nerv Syst. 2001;6:14–20.

    Article  CAS  PubMed  Google Scholar 

  53. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8:475–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Wittbrodt ET. Drugs and myasthenia gravis. An update. Arch Intern Med. 1997;157:399–408.

    Article  CAS  PubMed  Google Scholar 

  55. Hokkanen E. Antibiotics in myasthenia gravis. Br Med J. 1964;1:1111–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hokkanen E. The aggravating effect of some antibiotics on the neuromuscular blockade in myasthenia gravis. Acta Neurol Scand. 1964;40:346–52.

    Article  CAS  PubMed  Google Scholar 

  57. Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation: evaluation of postmarketing reports from the US FDA adverse event reporting system and a literature review. Drug Saf Int J Med Toxicol Drug Exp. 2011;34:839–47.

    Article  CAS  Google Scholar 

  58. Pradhan S, Pardasani V, Ramteke K. Azithromycin-induced myasthenic crisis: reversibility with calcium gluconate. Neurol India. 2009;57:352–3.

    Article  PubMed  Google Scholar 

  59. Pijpers E, van Rijswijk RE, Takx-Köhlen B, Schrey G. A clarithromycin-induced myasthenic syndrome. Clin Infect Dis Off Publ Infect Dis Soc Am. 1996;22:175–6.

    Article  CAS  Google Scholar 

  60. Absher JR, Bale JF. Aggravation of myasthenia gravis by erythromycin. J Pediatr. 1991;119:155–6.

    Article  CAS  PubMed  Google Scholar 

  61. May EF, Calvert PC. Aggravation of myasthenia gravis by erythromycin. Ann Neurol. 1990;28:577–9.

    Article  CAS  PubMed  Google Scholar 

  62. Argov Z, Mastaglia FL. Drug therapy: disorders of neuromuscular transmission caused by drugs. N Engl J Med. 1979;301:409–13.

    Article  CAS  PubMed  Google Scholar 

  63. Dobrev D, Ravens U. Therapeutically relevant concentrations of neomycin selectively inhibit P-type Ca2+ channels in rat striatum. Eur J Pharmacol. 2003;461:105–11.

    Article  CAS  PubMed  Google Scholar 

  64. Harnett MT, Chen W, Smith SM. Calcium-sensing receptor: a high-affinity presynaptic target for aminoglycoside-induced weakness. Neuropharmacology. 2009;57:502–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sieb JP, Milone M, Engel AG. Effects of the quinoline derivatives quinine, quinidine, and chloroquine on neuromuscular transmission. Brain Res. 1996;712:179–89.

    Article  CAS  PubMed  Google Scholar 

  66. Sieb JP. Fluoroquinolone antibiotics block neuromuscular transmission. Neurology. 1998;50:804–7.

    Article  CAS  PubMed  Google Scholar 

  67. Bertrand D, Bertrand S, Neveu E, Fernandes P. Molecular characterization of off-target activities of telithromycin: a potential role for nicotinic acetylcholine receptors. Antimicrob Agents Chemother. 2010;54:5399–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ryan Darby and Shamik Bhattacharyya have no conflict of interest relevant to the manuscript. Dr. Berkowitzhas no conflicts of interests relevant to the manuscript, but receives royalties from Clinical Pathophysiology Made Ridiculously Simple (Medmaster) and The Improvising Mind (Oxford).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Bhattacharyya.

Additional information

Shamik Bhattacharyya and Ryan Darby contributed equally to the work.

This article is part of the Topical Collection on Central Nervous System Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Darby, R. & Berkowitz, A.L. Antibiotic-Induced Neurotoxicity. Curr Infect Dis Rep 16, 448 (2014). https://doi.org/10.1007/s11908-014-0448-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0448-3

Keywords

Navigation