Skip to main content
Log in

Pathophysiology of Infective Endocarditis

  • CARDIOVASCULAR INFECTIONS (D LEVINE, SECTION EDITOR)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Infective endocarditis (IE) is an uncommon infection, occurring as a complication in varying percentages of bacteremic episodes. The ability of an organism to cause endocarditis is the result of an interplay between the predisposing structural abnormalities of the cardiac valve for bacterial adherence, the adhesion of circulating bacteria to the valvular surface, and the ability of the adherent bacteria to survive on the surface and propagate as vegetation or systemic emboli. Certain bacteria, if present in the bloodstream, may colonize the initially sterile vegetation composed of fibrin and platelets; bacterial growth enlarges the vegetation, further impeding blood flow and inciting inflammation that involves the vegetation and adjacent endothelium. The true incidence of endocarditis complicating each of the bacterial species causing IE is difficult to estimate. About 20 %–30 % of individuals with community-acquired staphylococcal bacteremia develop IE [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chang FY et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 2003;82(5):322–32.

    Article  Google Scholar 

  2. Fowler Jr VG et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med. 2003;163(17):2066–72.

    Article  PubMed  Google Scholar 

  3. Garrison PK, Freedman LR. Experimental endocarditis I. Staphylococcal endocarditis in rabbits resulting from placement of a polyethylene catheter in the right side of the heart. Yale J Biol Med. 1970;42(6):394–410.

    PubMed  CAS  Google Scholar 

  4. Durack DT. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol. 1975;115(2):81–9.

    Article  PubMed  CAS  Google Scholar 

  5. O'Brien L et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol. 2002;44(4):1033–44.

    Article  PubMed  Google Scholar 

  6. McNicol A, Israels SJ. Mechanisms of oral bacteria-induced platelet activation. Can J Physiol Pharmacol. 2010;88(5):510–24.

    Article  PubMed  CAS  Google Scholar 

  7. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006;4(6):445–57.

    Article  PubMed  CAS  Google Scholar 

  8. Freedman LR, Valone Jr J. Experimental infective endocarditis. Prog Cardiovasc Dis. 1979;22(3):169–80.

    Article  PubMed  CAS  Google Scholar 

  9. Gould K et al. Adherence of bacteria to heart valves in vitro. J Clin Invest. 1975;56(6):1364–70.

    Article  PubMed  CAS  Google Scholar 

  10. Didierlaurent A, Goulding J, Hussell T. The impact of successive infections on the lung microenvironment. Immunology. 2007;122(4):457–65.

    Article  PubMed  CAS  Google Scholar 

  11. Scheld WM, Valone JA, Sande MA. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest. 1978;61(5):1394–404.

    Article  PubMed  CAS  Google Scholar 

  12. Edwards AM et al. Staphylococcus aureus extracellular adherence protein triggers TNFalpha release, promoting attachment to endothelial cells via protein A. PLoS One. 2012;7(8):e43046.

    Article  PubMed  CAS  Google Scholar 

  13. Bayer AS et al. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun. 1997;65(11):4652–60.

    PubMed  CAS  Google Scholar 

  14. •• Schubert S et al. Staphylococcus aureus alpha-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets. Toxins (Basel). 2011;3(2):120–33. An important study illustrating the effect of staphylococcal alpha toxin on immediate and prolonged platelet activation, which could be decreased by targeting mTOR.

    Article  CAS  Google Scholar 

  15. •• Yamaguchi T, Soutome S, Oho T. Identification and characterization of a fibronectin-binding protein from Granulicatella adiacens. Mol Oral Microbiol. 2011;26(6):353–64. Identification of a surface protein, designated Cha, which binds to fibronectin and is involved in adherence to fibronectin. May provide potential therapeutic target.

    Article  PubMed  CAS  Google Scholar 

  16. Yeaman MR et al. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis. 1992;166(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  17. Josefsson E et al. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology. 1998;144(12):3387–95.

    Article  PubMed  CAS  Google Scholar 

  18. Kuypers JM, Proctor RA. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun. 1989;57(8):2306–12.

    PubMed  CAS  Google Scholar 

  19. Moreillon P et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun. 1995;63(12):4738–43.

    PubMed  CAS  Google Scholar 

  20. • Veloso TR et al. Use of a human-like low-grade bacteremia model of experimental endocarditis to study the role of Staphylococcus aureus adhesins and platelet aggregation in early endocarditis. Infect Immun. 2013;81(3):697–703. Important study hgihlighting the role of bacterial adhesins in initiation and subsequent prpogation of endocariditis lesion.

    Article  PubMed  CAS  Google Scholar 

  21. Yeh CY, Chen JY, Chia JS. Glucosyltransferases of viridans group streptococci modulate interleukin-6 and adhesion molecule expression in endothelial cells and augment monocytic cell adherence. Infect Immun. 2006;74(2):1273–83.

    Article  PubMed  CAS  Google Scholar 

  22. McKinsey DS, Ratts TE, Bisno AL. Underlying cardiac lesions in adults with infective endocarditis. The changing spectrum. Am J Med. 1987;82(4):681–8.

    Article  PubMed  CAS  Google Scholar 

  23. Hoen B, Duval X. Clinical practice. Infective endocarditis. N Engl J Med. 2013;368(15):1425–33.

    Article  PubMed  CAS  Google Scholar 

  24. Weinberger I et al. Native valve infective endocarditis in the 1970s versus the 1980s: underlying cardiac lesions and infecting organisms. Clin Cardiol. 1990;13(2):94–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lepeschkin E. On the relation between the site of valvular involvement in endocarditis and the blood pressure resting on the valve. Am J Med Sci. 1952;224(3):318–9.

    Article  PubMed  CAS  Google Scholar 

  26. Michel PL, Acar J. Native cardiac disease predisposing to infective endocarditis. Eur Heart J. 1995;16(Suppl B):2–6.

    Article  PubMed  Google Scholar 

  27. Bansal RC. Infective endocarditis. Med Clin North Am. 1995;79(5):1205–40.

    PubMed  CAS  Google Scholar 

  28. Millaire A et al. Obstruction of the left main coronary ostium due to an aortic vegetation: survival after early surgery. Clin Infect Dis. 1996;22(1):192–3.

    Article  PubMed  CAS  Google Scholar 

  29. Bayer AS. Infective endocarditis. Clin Infect Dis. 1993;17(3):313–20. quiz 321-2.

    Article  PubMed  CAS  Google Scholar 

  30. Rodbard S. Blood velocity and endocarditis. Circulation. 1963;27:18–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Yoav Keynan declares that he has no conflict of interest.

Ethan Rubinstein declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Rubinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keynan, Y., Rubinstein, E. Pathophysiology of Infective Endocarditis. Curr Infect Dis Rep 15, 342–346 (2013). https://doi.org/10.1007/s11908-013-0346-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-013-0346-0

Keywords

Navigation