Skip to main content

Advertisement

Log in

Targeting Chronic Myeloid Leukemia Stem Cells

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) arises as a consequence of a chromosomal translocation giving rise to the Philadelphia chromosome and Bcr-Abl oncogene. CML is a clonal disease of stem cell origin and an excellent example of a malignancy in which tumor-initiating cells may hold the key to disease eradication. The known molecular basis of CML has enabled the development of Abl-specific tyrosine kinase inhibitors, such as imatinib mesylate. However, the success of tyrosine kinase inhibitors, as rationally designed first-line therapies, has been tempered by problems of disease persistence and resistance. Residual disease has been shown to be enriched within the stem cell compartment and to persist at stable levels for up to 5 years of complete cytogenetic response. This finding has led to further searches for novel strategies aimed at eliminating these cells; such strategies may be essential in achieving cure. The most significant recent findings are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Nowell PC, Hungerford DA: Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960, 25:85–109.

    PubMed  CAS  Google Scholar 

  2. Konopka JB, Watanabe SM, Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984, 37(3):1035–1042.

    Article  PubMed  CAS  Google Scholar 

  3. Groffen J, Stephenson JR, Heisterkamp N, et al.: Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984, 36(1):93–99.

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien SG, Guilhot F, Larson RA, et al.: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003, 348(11):994–1004.

    Article  PubMed  Google Scholar 

  5. Sawyers CL: Research on resistance to cancer drug Gleevec. Science 2001, 294(5548):1834.

    Article  PubMed  CAS  Google Scholar 

  6. Hughes TP, Kaeda J, Branford S, et al.: Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003, 349(15):1423–1432.

    Article  PubMed  CAS  Google Scholar 

  7. Raaijmakers MH, Scadden DT: Evolving concepts on the microenvironmental niche for hematopoietic stem cells [review]. Curr Opin Hematol 2008, 15(4):301–306.

    Article  PubMed  Google Scholar 

  8. Jin L, Tabe Y, Konoplev S, et al.: CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008, 7(1):48–58.

    Article  PubMed  CAS  Google Scholar 

  9. Bhatia R, Holtz M, Niu N, et al.: Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003, 101(12):4701–4707.

    Article  PubMed  CAS  Google Scholar 

  10. Cortes J, O’Brien S, and Kantarjian H: Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004, 104(7):2204–2205.

    Article  PubMed  CAS  Google Scholar 

  11. Graham SM, Jorgensen HG, Allan E, et al.: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002, 99(1):319–325.

    Article  PubMed  CAS  Google Scholar 

  12. Copland M, Hamilton A, Elrick LJ, et al.: Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006, 107(11):4532–4539.

    Article  PubMed  CAS  Google Scholar 

  13. Jorgensen HG, Allan EK, Jordanides NE, et al.: Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007, 109(9):4016–4019.

    Article  PubMed  CAS  Google Scholar 

  14. Koptyra M, Falinski R, Nowicki MO, et al.: BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006, 108(1):319–327.

    Article  PubMed  CAS  Google Scholar 

  15. Nowicki MO, Falinski R, Koptyra M, et al.: BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004, 104(12):3746–3753.

    Article  PubMed  CAS  Google Scholar 

  16. Koptyra M, Cramer K, Slupianek A, et al.: BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia 2008, 22(10):1969–1972.

    Article  PubMed  CAS  Google Scholar 

  17. McFarland KL, Wetzstein GA: Chronic myeloid leukemia therapy: focus on second-generation tyrosine kinase inhibitors [review]. Cancer Control 2009, 16(2):132–140.

    PubMed  Google Scholar 

  18. Noronha G, Cao J, Chow CP, et al.: Inhibitors of ABL and the ABL-T315I mutation [review]. Curr Top Med Chem 2008, 8(10):905–921.

    Article  PubMed  CAS  Google Scholar 

  19. O’Hare T, Shakespeare WC, Zhu X, et al.: AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009, 16(5):401–412.

    Article  PubMed  CAS  Google Scholar 

  20. • Chen Y, Hu Y, Zhang H, et al.: Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 2009, 41(7):783–792. Bcr-Abl failed to induce CML in mice in the absence of the arachidonate 5-lipoxygenase (5-LO) gene (Alox5). Deficiency of Alox5 caused impairment of the function of CML stem cells, but not of normal HSC.

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y, Li D, Li S: The Alox5 gene is a novel therapeutic target in cancer stem cells of chronic myeloid leukemia [review]. Cell Cycle 2009, 8(21):3488–3492.

    PubMed  Google Scholar 

  22. • Ito K, Bernardi R, Morotti A, et al.: PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008, 453(7198):1072–1078. Loss of PML in CML stem cells resulted in intensive cell cycling, resulting in impairment of CML stem cell maintenance. PML can be inhibited by arsenic trioxide (As 2 O 3 ) and could be a therapeutic option for targeting CML stem cells.

    Article  PubMed  CAS  Google Scholar 

  23. • Dierks C, Beigi R, Guo GR, et al.: Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008, 14(3):238–249. In mice, loss of Smoothened (Smo) inhibited expansion of CML stem cells and abrogated the retransplantability of the disease. Pharmacologic Smo inhibition reduced leukemic stem cells in vivo and enhanced time to relapse after end of treatment.

    Article  PubMed  CAS  Google Scholar 

  24. • Zhao C, Chen A, Jamieson CH, et al.: Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009, 458(7239):776–779. Loss of Smo impaired HSC self-renewal and decreased Bcr-Abl induced CML. Loss of Smo caused depletion of CML stem cells, whereas constitutively active Smo augmented CML stem cell number and accelerated disease.

    Article  PubMed  CAS  Google Scholar 

  25. Ghaffari S, Jagani Z, Kitidis C, et al.: Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U S A 2003, 100(11):6523–6528.

    Article  PubMed  CAS  Google Scholar 

  26. Komatsu N, Watanabe T, Uchida M, et al.: A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 2003, 278(8):6411–6419.

    Article  PubMed  CAS  Google Scholar 

  27. Tothova Z, Kollipara R, Huntly BJ, et al.: FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007, 128(2):325–339.

    Article  PubMed  CAS  Google Scholar 

  28. Tothova Z, Gilliland DG: FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system [review]. Cell Stem Cell 2007, 1(2):140–152.

    Article  PubMed  CAS  Google Scholar 

  29. Jagani Z, Song K, Kutok JL, et al.: Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors. Cancer Res 2009, 69(16):6546–6555.

    Article  PubMed  CAS  Google Scholar 

  30. Hu Z, Pan XF, Wu FQ, et al.: Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One 2009, 4(7):e6257.

    Article  PubMed  CAS  Google Scholar 

  31. Heaney NB, Pellicano F, Zhang B, et al.: Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood 2010 Jan 12 (Epub ahead of print).

  32. Jagani Z, Singh A, Khosravi-Far R: FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta 2008, 1785(1):63–84.

    PubMed  CAS  Google Scholar 

  33. • Santaguida M, Schepers K, King B, et al.: JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 2009, 15(4):341–352. JunB inactivation deregulates the cell-cycle machinery and increases the proliferation of HSCs without impairing their self-renewal or regenerative potential.

    Article  PubMed  CAS  Google Scholar 

  34. Kroemer G, Jaattela M: Lysosomes and autophagy in cell death control [review]. Nat Rev Cancer 2005, 5(11):886–897.

    Article  PubMed  CAS  Google Scholar 

  35. Kundu M, Thompson CB: Autophagy: basic principles and relevance to disease [review]. Annu Rev Pathol 2008, 3:427–455.

    Article  PubMed  CAS  Google Scholar 

  36. • Bellodi C, Lidonnici MR, Hamilton A, et al.: Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009, 119(5):1109–1123. TKI treatment induced autophagy (cellular response to stress and/or starvation) in cell lines and primary CML cells. Pharmacologic suppression of autophagy enhanced TKI-induced cell death, with the combination resulting in near-complete elimination of CML stem cells. Autophagy inhibitors may therefore enhance the therapeutic effects of TKIs in the treatment of CML.

    Article  PubMed  CAS  Google Scholar 

  37. Salomoni P, Calabretta B: Targeted therapies and autophagy: new insights from chronic myeloid leukemia [review]. Autophagy 2009. 5(7):1050–1051.

    Article  PubMed  CAS  Google Scholar 

  38. Melo JV, Chuah C: Novel agents in CML therapy: tyrosine kinase inhibitors and beyond. Hematology Am Soc Hematol Educ Program 2008:427–435.

  39. • Rezvani K, Yong AS, Tawab A, et al.: Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009, 113(10):2245–2255. Preferentially expressed antigen of melanoma (PRAME) is aberrantly expressed in hematologic malignancies including CML and may be useful for immunotherapy in leukemia.

    Article  PubMed  CAS  Google Scholar 

  40. • Yong AS, Keyvanfar K, Hensel N, et al.: Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood 2009, 113(4):875–882. Primitive quiescent CD34+ cells in CML are targeted by in vitro expanded NK cells.

    Article  PubMed  CAS  Google Scholar 

  41. • Essers MA, Offner S, Blanco-Bose WE, et al.: IFNα activates dormant haematopoietic stem cells in vivo. Nature 2009, 458(7240):904–908. In response to treatment of mice with IFNα, HSCs efficiently exited G(0) and entered an active cell cycle. HSCs pretreated with IFNα were efficiently eliminated by 5-fluorouracil exposure, which raises the possibility for new applications of type I interferons to target CML stem cells.

    Article  PubMed  CAS  Google Scholar 

  42. Passegue E, and Ernst P: IFN-alpha wakes up sleeping hematopoietic stem cells [review]. Nat Med 2009. 15(6):612–613.

    Article  PubMed  CAS  Google Scholar 

  43. Guilhot F, Mahon FX, Guilhot J, et al.: Randomized comparison of imatinib versus imatinib combination therapies in newly diagnosed chronic myeloid leukaemia (CML) patients in chronic phase (CP): first results of the phase III (SPIRIT) trial from the French CML Group (FI LMC) [abstract]. Blood (ASH Annual Meeting Abstracts) 2008, 112:Abstract 183.

  44. Mustjoki S, Ekblom M, Arstila TP, et al.: Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 2009, 23(8):1398–1405.

    Article  PubMed  CAS  Google Scholar 

  45. • Rezvani K, Yong AS, Mielke S, et al.: Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008, 111(1):236–242. The safety and immunogenicity of a combined vaccine of two leukemia-associated antigenic peptides, PR1 and WT1, was described. These results support further studies of immunization strategies in CML patients.

    Article  PubMed  CAS  Google Scholar 

  46. Neviani P, Santhanam R, Oaks JJ, et al.: FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007, 117(9):2408–2421.

    Article  PubMed  CAS  Google Scholar 

  47. Cortes J, Quintas-Cardama A, Garcia-Manero G, et al.: Phase 1 study of tipifarnib in combination with imatinib for patients with chronic myelogenous leukemia in chronic phase after imatinib failure. Cancer 2007, 110(9):2000–2006.

    Article  PubMed  CAS  Google Scholar 

  48. Jorgensen HG, Allan EK, Graham SM, et al.: Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia 2005, 19(7):1184–1191.

    Article  PubMed  CAS  Google Scholar 

  49. Pellicano F, Copland M, Jorgensen HG, et al.: BMS-214662 induces mitochondrial apoptosis in CML stem/progenitor cells, including CD34+38- cells, through activation of protein kinase Cβ. Blood 2009, 114(19):4186–4196.

    Article  PubMed  CAS  Google Scholar 

  50. Copland M, Pellicano F, Richmond L, et al.: BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 2008, 111(5):2843–2853.

    Article  PubMed  CAS  Google Scholar 

  51. Mohi MG, Boulton C, Gu TL, et al.: Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004, 101(9):3130–3135.

    Article  PubMed  CAS  Google Scholar 

  52. Mancini M, Corradi V, Petta S, et al.: mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 2009 Jul 28 (Epub ahead of print).

  53. Quintas-Cardama A, Kantarjian H, Cortes J: Homoharringtonine, omacetaxine mepesuccinate, and chronic myeloid leukemia circa 2009 [review]. Cancer 2009, 115(23):5382–5393.

    Article  PubMed  CAS  Google Scholar 

  54. Quintas-Cardama A, Cortes J: Omacetaxine mepesuccinate—a semisynthetic formulation of the natural antitumoral alkaloid homoharringtonine, for chronic myelocytic leukemia and other myeloid malignancies. IDrugs 2008, 11(5):356–372.

    PubMed  CAS  Google Scholar 

  55. Quintas-Cardama A, Cortes J: Homoharringtonine for the treatment of chronic myelogenous leukemia. Expert Opin Pharmacother 2008, 9(6):1029–1037.

    Article  PubMed  CAS  Google Scholar 

  56. Allan EK, Jorgensen HG, Michaels S, Holyoake TL: Omacetaxine cytotoxic activity in chronic myeloid leukaemia stem cells [abstract 1052]. Presented at the 14th Congress of the European Hematology Association (EHA). Berlin, Germany; June 4–7, 2009.

  57. Morotti A, Cilloni D, Messa F, et al.: Valproate enhances imatinib-induced growth arrest and apoptosis in chronic myeloid leukemia cells. Cancer 2006, 106(5):1188–1196.

    Article  PubMed  CAS  Google Scholar 

  58. Fiskus W, Pranpat M, Bali P, et al.: Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood 2006, 108(2):645–652.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mhairi Copland for providing FACS plots for Fig. 1.

Disclosure

Dr. Holyoake has received research funding and honoraria for consultancy from Novartis and Bristol-Myers Squibb. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tessa L. Holyoake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helgason, G.V., Young, G.A.R. & Holyoake, T.L. Targeting Chronic Myeloid Leukemia Stem Cells. Curr Hematol Malig Rep 5, 81–87 (2010). https://doi.org/10.1007/s11899-010-0043-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-010-0043-0

Keywords

Navigation