Skip to main content

Advertisement

Log in

Sarcopenic Obesity and the Pathogenesis of Exercise Intolerance in Heart Failure with Preserved Ejection Fraction

  • Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (SD Katz, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is the most common form of heart failure (HF) in older adults. The primary chronic symptom in patients with HFpEF, even when well compensated, is severe exercise intolerance. Cardiac and peripheral functions contribute equally to exercise intolerance in HFpEF, though the latter has been the focus of fewer studies. Of note, multiple studies with exercise training have shown that exercise intolerance can improve significantly in the absence of improvements in exercise cardiac output, indicating a role of peripheral, noncardiac adaptations. In addition, clinical drug trials performed to date in HFpEF, all of which have focused on influencing cardiovascular function, have not been positive on primary clinical outcomes and most have not improved exercise capacity. Mounting evidence indicates that sarcopenic obesity, characterized by the coexistence of excess fat mass and decreased muscle mass, could contribute to the pathophysiology of exercise intolerance in older HFpEF patients and may provide avenues for novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    CAS  PubMed  Google Scholar 

  2. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126:65–75.

    PubMed  Google Scholar 

  3. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9.

    CAS  PubMed  Google Scholar 

  4. Liao L, Jollis JG, Anstrom KJ, Whellan DJ, Kitzman DW, Aurigemma GP, et al. Costs for heart failure with normal vs reduced ejection fraction. Arch Intern Med. 2006;166:112–8.

    PubMed  Google Scholar 

  5. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304.

    PubMed Central  PubMed  Google Scholar 

  6. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–47.

    PubMed  Google Scholar 

  7. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54.

    PubMed Central  PubMed  Google Scholar 

  8. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74. This study showed that change in A-VO2 Diff from rest to peak exercise was the strongest independent predictor of the reduced peak VO2 in HFpEF patients.

    PubMed Central  PubMed  Google Scholar 

  9. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan M. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17:1065–72.

    CAS  PubMed  Google Scholar 

  10. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288:2144–50.

    PubMed  Google Scholar 

  11. Maeder MT, Thompson BR, Brunner-La Rocca H-P, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56:855–63.

    PubMed  Google Scholar 

  12. Kitzman DW, Haykowsky MJ. Mechanisms of exercise training in heart failure with preserved ejection fraction: central disappointment and peripheral promise. Am Heart J. 2012;164:807–9.

    PubMed  Google Scholar 

  13. Kitzman DW. Understanding results of trials in heart failure with preserved ejection fraction: remembering forgotten lessons and enduring principles. J Am Coll Cardiol. 2011;57:1687–9.

    PubMed Central  PubMed  Google Scholar 

  14. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32:670–9.

    PubMed Central  PubMed  Google Scholar 

  15. Kitzman D, Brubaker P, Morgan T, Stewart K, Little W. Exercise training in older patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2010;3:659–67.

    PubMed Central  PubMed  Google Scholar 

  16. Ndumele CE, Coresh J, Lazo M, Hoogeveen RC, Blumenthal RS, Folsom AR, et al. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail. 2014;2:600–7. This study showed that higher BMI has an independent, linear association with subclinical myocardial injury.

    PubMed  Google Scholar 

  17. Ding J, Kritchevsky SB, Newman AB, Taaffe DR, Nicklas BJ, Visser M, et al. Effects of birth cohort and age on body composition in a sample of community-based elderly. Am J Clin Nutr. 2007;85:405–10.

    CAS  PubMed  Google Scholar 

  18. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol. 2000;88:1321–6.

    CAS  PubMed  Google Scholar 

  19. Zamboni M, Armellini F, Harris T, Turcato E, Micciolo R, Bergamo-Andreis IA, et al. Effects of age on body fat distribution and cardiovascular risk factors in women. Am J Clin Nutr. 1997;66:111–5.

    CAS  PubMed  Google Scholar 

  20. Bensimhon DR, Leifer E, Ellis SJ, Fleg JL, Keteyian SJ, Pina LI, et al. Reproducibility of peak oxygen uptake and other cardiopulmonary exercise testing parameters in patients with heart failure. Am J Cardiol. 2008;102:712–7.

    PubMed Central  PubMed  Google Scholar 

  21. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60:120–8. This study suggests the novel finding of peripheral mechanisms contribute to the improved exercise capacity after exercise training in HFpEF.

    PubMed Central  PubMed  Google Scholar 

  22. Fujimoto N, Prasad A, Hastings JL, Bhella PS, Shibata S, Palmer D, et al. Cardiovascular effects of 1 year of progressive endurance exercise training in patients with heart failure with preserved ejection fraction. Am Heart J. 2012;164:869–77.

    PubMed  Google Scholar 

  23. Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, et al. Mechanisms of exercise intolerance in heart hailure with preserved ejection fraction: the role of abnormal peripheral pxygen extraction. Circ Heart Fail. 2014.

  24. Pandey A, Parashar A, Kumbhani DJ, Agarwal S, Garg J, Kitzman D, et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail. 2015;8:33–40. Recent more updated comprehensive meta-analysis of exercise training in HFpEF patients showed that exercise training improved functional capacity, without affecting cardiac function.

    PubMed  Google Scholar 

  25. Cesari M, Pahor M. Target population for clinical trials on sarcopenia. J Nutr Health Aging. 2008;12:470–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Gottdiener J, Bartz T, DeFilippi C, Kop W, Kitzman D, Barasch E, et al. Echocardiographic and biomarker phenotype of heart failure with preserved ejection fraction (HFPEF) in older individuals in comparison to hypertension without heart failure (HTN), elderly with risk factors, and healthy aging. Importance of myocyte injury, fibrosis, LV hypertrophy, and diastolic load. J Am Coll Cardiol. 2012;59:E852.

    Google Scholar 

  27. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol. 2000;35:1628–37.

    CAS  PubMed  Google Scholar 

  28. Waters DL, Baumgartner RN. Sarcopenia and obesity. Clin Geriatr Med. 2011;27:401–21.

    PubMed  Google Scholar 

  29. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11:693–700.

    PubMed Central  PubMed  Google Scholar 

  30. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008;18:388–95.

    CAS  PubMed  Google Scholar 

  31. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12:1995–2004.

    PubMed  Google Scholar 

  32. Marcell TJ. Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci. 2003;58:M911–6.

    PubMed  Google Scholar 

  33. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K, et al. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol. 2011;57:861–9.

    CAS  PubMed  Google Scholar 

  34. Kalogeropoulos A, Georgiopoulou V, Psaty B, Rodondi N, Smith A, Harrison D, et al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55:2129–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9.

    CAS  PubMed  Google Scholar 

  36. Lang CH, Frost RA, Nairn AC, MacLean DA, Vary TC. TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab. 2002;282:E336–47.

    CAS  PubMed  Google Scholar 

  37. Williamson DL, Kimball SR, Jefferson LS. Acute treatment with TNF-alpha attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am J Physiol Endocrinol Metab. 2005;289:E95–104.

    CAS  PubMed  Google Scholar 

  38. Kewalramani G, Bilan PJ, Klip A. Muscle insulin resistance: assault by lipids, cytokines and local macrophages. Curr Opin Clin Nutr Metab Care. 2010;13:382–90.

    CAS  PubMed  Google Scholar 

  39. Tan Y, Peng X, Wang F, You Z, Dong Y, Wang S. Effects of tumor necrosis factor-alpha on the 26S proteasome and 19S regulator in skeletal muscle of severely scalded mice. J Burn Care Res. 2006;27:226–33.

    PubMed  Google Scholar 

  40. Fujita J, Tsujinaka T, Ebisui C, Yano M, Shiozaki H, Katsume A, et al. Role of interleukin-6 in skeletal muscle protein breakdown and cathepsin activity in vivo. Eur Surg Res. 1996;28:366.

    Google Scholar 

  41. Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol. 2011;300:H1973–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Dai D, Santana L, Vermulst M, Tomazela D, Emond M, MacCoss M, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119:2789–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Cucoranu I, Clempus R, Dikalova A, Phelan P, Ariyan S, Dikalov S, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97:900–7.

    CAS  PubMed  Google Scholar 

  44. Fano G, Mecocci P, Vecchiet J, Belia S, Fulle S, Polidori MC, et al. Age and sex influence on oxidative damage and functional status in human skeletal muscle. J Muscle Res Cell Motil. 2001;22:345–51.

    CAS  PubMed  Google Scholar 

  45. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Waters DL, Qualls CR, Dorin RI, Veldhuis JD, Baumgartner RN. Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci Med Sci. 2008;63:536–41.

    PubMed  Google Scholar 

  47. Allan CA, Strauss BJ, McLachlan RI. Body composition, metabolic syndrome and testosterone in ageing men. Int J Impot Res. 2007;19:448–57.

    CAS  PubMed  Google Scholar 

  48. Ceda GP, Dall’Aglio E, Maggio M, Lauretani F, Bandinelli S, Falzoi C, et al. Clinical implications of the reduced activity of the GH-IGF-I axis in older men. J Endocrinol Invest. 2005;28:96–100.

    CAS  PubMed  Google Scholar 

  49. Schaap LA, Pluijm SM, Smit JH, van Schoor NM, Visser M, Gooren LJ, et al. The association of sex hormone levels with poor mobility, low muscle strength and incidence of falls among older men and women. Clin Endocrinol. 2005;63:152–60.

    CAS  Google Scholar 

  50. Cappol AR, Bdandeen-Roche K, Wand GS, Volpato S, Fried LP. Association of IGF-I levels with muscle strength and mobility in older women. J Clin Endocrinol Metab. 2001;86:4139–46.

    Google Scholar 

  51. Galvao DA, Taaffe DR, Spry N, Newton RU. Exercise can prevent and even reverse adverse effects of androgen suppression treatment in men with prostate cancer. Prostate Cancer Prostatic Dis. 2007;10:340–6.

    CAS  PubMed  Google Scholar 

  52. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    CAS  PubMed  Google Scholar 

  53. Goodpaster FH, Brown FF. Skeletal muscle lipid and its association with insulin resistance: what is the role for exercise? Exerc Sport Sci Rev. 2005;33:150–4.

    PubMed  Google Scholar 

  54. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol. 2001;90:2157–65.

    CAS  PubMed  Google Scholar 

  55. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc. 2002;50:897–904.

    PubMed  Google Scholar 

  56. Sipila S, Suominen H. Knee extension strength and walking speed in relation to quadriceps muscle composition and training in elderly women. Clin Physiol. 1994;14:433–42.

    CAS  PubMed  Google Scholar 

  57. Corcoran MP, Lamon-Fava S, Fielding RA. Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am J Clin Nutr. 2007;85:662–77.

    CAS  PubMed  Google Scholar 

  58. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76.

    PubMed Central  PubMed  Google Scholar 

  59. Van Dam PS, Smid HE, de Vries WR, Niesink, Bolscher E, Waasdorp EJ, et al. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men. J Clin Endocrinol Metab. 2000;85:4706–11.

    PubMed  Google Scholar 

  60. Weltman A, Weltman JY, Veldhuis JD, Hartman ML. Body composition, physical exercise, growth hormone and obesity. Eat Weight Disord EWD. 2001;6:28–37.

    CAS  Google Scholar 

  61. Roth SM, Metter EJ, Ling S, Ferrucci L. Inflammatory factors in age-related muscle wasting. Curr Opin Rheumatol. 2006;18:625–30.

    CAS  PubMed  Google Scholar 

  62. Paulus W, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. Novel study explains the new paradigm of HFpEF development, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations.

    PubMed  Google Scholar 

  63. Jonk AM, Houben AJ, de Jongh RT, Serne EH, Schaper NC, Stehouwer CD. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22:252–60.

    CAS  PubMed  Google Scholar 

  64. LaMonte MJ, Blair SN. Physical activity, cardiorespiratory fitness, and adiposity: contributions to disease risk. Curr Opin Clin Nutr Metab Care. 2006;9:540–6.

    PubMed  Google Scholar 

  65. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007;297:1772–4.

    CAS  PubMed  Google Scholar 

  66. Lee JS, Auyeung TW, Kwok T, Lau EM, Leung PC, Woo J. Associated factors and health impact of sarcopenia in older chinese men and women: a cross-sectional study. Gerontology. 2007;53:404–10.

    PubMed  Google Scholar 

  67. Larsson L, Sjodin B, Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand. 1978;103:31–9.

    CAS  PubMed  Google Scholar 

  68. Borges O, Essen-Gustavsson B. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development. Acta Physiol Scand. 1989;136:29–36.

    CAS  PubMed  Google Scholar 

  69. Coggan AR, Spina RJ, King DS. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol. 1992;47:B71–6.

    CAS  PubMed  Google Scholar 

  70. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90:1579–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci. 2013;68:447–55.

    PubMed Central  PubMed  Google Scholar 

  72. Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A. 1996;93:15364–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Larsson L, Karlsson J. Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol Scand. 1978;104:129–36.

    CAS  PubMed  Google Scholar 

  74. Nicklas B, Leng I, Delbono O, Kitzman DW, Marsh A, Hundley WG, et al. Relationship of physical function to vastus lateralis capillary density and metabolic enzyme activity in elderly men and women. Aging Clin Exp Res. 2008;20:302–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60:324–33.

    PubMed  Google Scholar 

  76. Beavers KM, Beavers DP, Houston DK, Harris TB, Hue TF, Koster A, et al. Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study. Am J Clin Nutr. 2013;97:552–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Evans WJ. Effects of exercise on body composition and functional capacity of the elderly. J Gerontol A Biol Med Sci. 1995;50A:147–50.

    Google Scholar 

  78. Georgiadou P, Adamopoulos S. Skeletal muscle abnormalities in chronic heart failure. Curr Heart Fail Rep. 2012;9:128–32.

    PubMed  Google Scholar 

  79. Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9.

    PubMed  Google Scholar 

  80. Afilalo J, Karunananthan S, Eisenberg MJ, Alexander KP, Bergman H. Role of frailty in patients with cardiovascular disease. Am J Cardiol. 2009;103:1616–21.

    PubMed  Google Scholar 

  81. Duscha BD, Annex BH, Green HJ, Pippen AM, Kraus WE. Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol. 2002;39:1170–4.

    PubMed  Google Scholar 

  82. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005. This study highlights importance of comorbidities on overall prognostic impact in HFpEF.

    PubMed  Google Scholar 

  83. Haykowsky M, Brubaker P, Morgan T, Kritchevsky S, Eggebeen J, Kitzman D. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J Gerontol A Biol Sci Med Sci. 2013;68:968–75. Novel finding of abnormalities in skeletal muscle perfusion and/or metabolism and its contribution to the severe exercise intolerance in older HFpEF patients.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Haykowsky M, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW. Skeletal muscle composition and its relationship to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol. 2014;113:1211–6. Important finding of abnormal fat infiltration into the thigh skeletal muscle and its association with reduced peak exercise capacity in HFpEF.

    PubMed Central  PubMed  Google Scholar 

  85. Heinonen I, Bucci M, Kemppainen J, Knuuti J, Nuutila P, Boushel R, et al. Regulation of subcutaneous adipose tissue blood flow during exercise in humans. Jvf Appl Physiol. 2012;112:1059–63.

    Google Scholar 

  86. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–70. This study showed that older HFpEF patients have significant abnormalities in skeletal muscle.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Drexler H, Riede J, Munzel T, Konig H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85:1751–9.

    CAS  PubMed  Google Scholar 

  88. Larsen A, Lindal S, Aukrust P, Toft I, Aarsland T, Dickstein K. Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol. 2002;83:25–32.

    PubMed  Google Scholar 

  89. Massie BM, Simonini A, Sahgal P, Wells L, Dudley GA. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure. J Am Coll Cardiol. 1996;27:140–5.

    CAS  PubMed  Google Scholar 

  90. Middlekauff HR. Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circ Heart Fail. 2010;3:537–46.

    PubMed Central  PubMed  Google Scholar 

  91. Scott Bowen T, Rolim NP, Fischer T, Baekkerud FH, Medeiros A, Werner S, et al. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail. 2015. This study is the first to demonstrate that HFpEF induces significant molecular, mitochondrial, histological, and functional alterations in the diaphragm and soleus, which were attenuated by exercise training.

  92. Rossiter HB. Exercise: kinetic considerations for gas exchange, comprehensive physiology. Inc.: John Wiley & Sons; 2010.

    Google Scholar 

  93. Poole DC, Hirai DM, Copp SW, Musch TI. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am J Physiol Heart Circ Physiol. 2012;302:H1050–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2014. This is the first autopsy study in HFpEF patients. The most novel finding was that of considerably reduced microvascular density that was independent of CAD and in adjusted analyses appeared to account for the increased fibrosis.

  95. Kitzman DW, Upadhya B, Vasu S. What the dead can teach the living: the systemic nature of heart failure with preserved ejection fraction. Circulation. 2015. This editorial offers an additional perspective to help reassure cardiologists uncomfortable with a paradigm conceptualizing the most common form of HF as anything other than a purely cardiac disorder.

  96. Fried LP, Hadley EC, Walston JD, Newman AB, Guralnik JM, Studenski S, et al. From bedside to bench: research agenda for frailty. Sci Aging Knowl Environ. 2005;2005:pe24.

    Google Scholar 

  97. Nicklas BJ, Chmelo E, Delbono O, Carr JJ, Lyles MF, March AP. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese, older adults: a randomized controlled trial. Am J Clin Nutri 2015;(In press).

  98. The LSI, Pahor M, Blair SN, Espeland MA, Fielding RA, Gill TM, et al. Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for elders pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci. 2006;61:1157–65.

    Google Scholar 

  99. Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol. 2006;101:531–44.

    CAS  PubMed  Google Scholar 

  100. Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med. 2009;169:122–31.

    PubMed  Google Scholar 

  101. Sullivan MJ, Duscha BD, Klitgaard H, Kraus WE, Cobb F, Saltin B. Altered expression of myosin heavy chain in human skeletal muscle in chronic heart failure. Med Sci Sports Exerc. 1997;29.

  102. Toth M, Matthews DE, Ades PA, Tischler MD, Van Buren P, Previs M, et al. Skeletal muscle myofibrillar protein metabolism in heart failure: relationship to immune activation and functional capacity. Am J Physiol Endocrinol Metab. 2005;288:E685–92.

    CAS  PubMed  Google Scholar 

  103. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, et al. Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12:401–6.

    PubMed  Google Scholar 

  104. Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation. 2005;111:1763–70.

    CAS  PubMed  Google Scholar 

  105. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1439–50.

    PubMed Central  PubMed  Google Scholar 

  106. Edelmann F, Gelbrich G, Dungen H, Frohling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol. 2011;58:1780–91.

    PubMed  Google Scholar 

  107. Kitzman D, Brubaker P, Herrington D, Morgan T, Stewart K, Hundley W, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol. 2013;62:584–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17.

    PubMed Central  PubMed  Google Scholar 

  109. Kraemer WJ, Hatfield DL, Volek JS, Fragala MS, Vingren JL, Anderson JM, et al. Effects of amino acids supplement on physiological adaptations to resistance training. Med Sci Sports Exerc. 2009;41:1111–21.

    CAS  PubMed  Google Scholar 

  110. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction/clinical perspective. Circ Heart Fail. 2011;4:324–31.

    PubMed Central  PubMed  Google Scholar 

  111. Santarpia L, Contaldo F, Pasanisi F. Body composition changes after weight-loss interventions for overweight and obesity. Clin Nutr. 2013;32:157–61.

    PubMed  Google Scholar 

  112. Villareal D, Chode S, Parimi N, Sinacore D, Hilton T, Armamento-Villareal R, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364:1218–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323:1–6.

    CAS  PubMed  Google Scholar 

  114. Sivakumar T, Mechanic OJ, Fehmie DA, Paul BT. Growth hormone axis treatments for HIV-associated lipodystrophy: a systematic review of placebo-controlled trials. HIV Med. 2011;12:453–62.

    CAS  PubMed  Google Scholar 

  115. Cittadini A, Marra AM, Arcopinto M, Bobbio E, Salzano A, Sirico D, et al. Growth hormone replacement delays the progression of chronic heart failure combined with growth hormone deficiency: an extension of a randomized controlled single-blind study. JCHF. 2013;1:325–30.

    Google Scholar 

  116. Toma M, McAlister FA, Coglianese EE, Vidi V, Vasaiwala S, Bakal JA, et al. Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012;5:315–21.

    CAS  PubMed  Google Scholar 

  117. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010;121:419–25.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported in part by NIH grant R01AG18915, P30AG021332, R01AG045551.

Compliance with Ethics Guidelines

Conflict of Interest

Bharathi Upadhya declares that she has no conflict of interest.

Mark J. Haykowsky declares that he has no conflict of interest.

Joel Eggebeen declares that he has no conflict of interest.

Dalane W. Kitzman has received compensation from GlaxoSmithKline, Relypsa, DC Devices, AbbVie, Regeneron, and Westat for service as a consultant; grant support from Novartis; and claims stock ownership in Gilead Sciences and Relypsa.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalane W. Kitzman.

Additional information

This article is part of the Topical Collection on Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhya, B., Haykowsky, M.J., Eggebeen, J. et al. Sarcopenic Obesity and the Pathogenesis of Exercise Intolerance in Heart Failure with Preserved Ejection Fraction. Curr Heart Fail Rep 12, 205–214 (2015). https://doi.org/10.1007/s11897-015-0257-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-015-0257-5

Keywords

Navigation