Skip to main content

Advertisement

Log in

Mechanisms for Cachexia in Heart Failure

  • Prevention of Heart Failure (M St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The combination of profound muscle wasting and severe weight loss that occurs in heart failure is a complex phenomenon that involves the interplay of numerous factors. In this article, we describe processes that contribute to cachexia, as part of the clinical sequelae of heart failure, and their potential underlying mechanisms. While multiple mechanisms of cardiac cachexia have been described, we propose a multifactorial etiology for this condition that includes, but is not limited to, nutritional and gastrointestinal alterations, immunological and neurohormonal activation, and anabolic and catabolic imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  2. von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res. 2007;73:298–309.

    Article  Google Scholar 

  3. Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96:526–34.

    Article  PubMed  CAS  Google Scholar 

  4. Katz AM, Katz PB. Diseases of the heart in the works of Hippocrates. Br Heart J. 1962;24:257–64.

    Article  PubMed  CAS  Google Scholar 

  5. Wolfram S, Anker SD. Cardiac cachexia: pathophysiology and clinical implications. Basic Appl Myol. 2003;13:191–201.

    Google Scholar 

  6. Anker SD, Negassa A, Coats AJ, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361:1077–83.

    Article  PubMed  CAS  Google Scholar 

  7. Cowie MR, Mosterd A, Wood DA, et al. The epidemiology of heart failure. Eur Heart J. 1997;18:208–25.

    Article  PubMed  CAS  Google Scholar 

  8. Kannel WB, Ho K, Thom T. Changing epidemiological features of cardiac failure. Br Heart J. 1994;72:S3–9.

    Article  PubMed  CAS  Google Scholar 

  9. Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.

    Article  PubMed  CAS  Google Scholar 

  10. Anker SD, Laviano A, Filippatos G, et al. ESPEN Guidelines on Parenteral Nutrition: on cardiology and pneumology. Clin Nutr. 2009;28:455–60.

    Article  PubMed  CAS  Google Scholar 

  11. Velloso LG, Csengeri LF, Alonso RR, et al. Malnutrition in dilated cardiomyopathy. Correlation with echocardiographic indices of left ventricular function. Arq Bras Cardiol. 1992;58:189–92.

    PubMed  CAS  Google Scholar 

  12. Gibbs CR, Jackson G, Lip GY. ABC of heart failure. Non-drug management. BMJ. 2000;320:366–9.

    Article  PubMed  CAS  Google Scholar 

  13. Vescovo G, Serafini F, Facchin L, et al. Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart. 1996;76:337–43.

    Article  PubMed  CAS  Google Scholar 

  14. May PE, Barber A, D’Olimpio JT, et al. Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg. 2002;183:471–9.

    Article  PubMed  CAS  Google Scholar 

  15. Stein TP, Donaldson MR, Leskiw MJ, et al. Branched-chain amino acid supplementation during bed rest: effect on recovery. J Appl Physiol. 2003;94:1345–52.

    PubMed  CAS  Google Scholar 

  16. Vasan RS, Beiser A, D’Agostino RB, et al. Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. JAMA. 2003;289:1251–7.

    Article  PubMed  CAS  Google Scholar 

  17. Sundstrom J, Sullivan L, D’Agostino RB, et al. Plasma homocysteine, hypertension incidence, and blood pressure tracking: the Framingham Heart Study. Hypertension. 2003;42:1100–5.

    Article  PubMed  Google Scholar 

  18. Xin W, Wei W, Li X. Effects of fish oil supplementation on inflammatory markers in chronic heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2012;12:77.

    Article  PubMed  CAS  Google Scholar 

  19. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1561–9.

    Article  PubMed  CAS  Google Scholar 

  20. Arutyunov GP, Kostyukevich OI, Serov RA, et al. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125:240–5.

    Article  PubMed  Google Scholar 

  21. Raja K, Kochhar R, Sethy PK, et al. An endoscopic study of upper-GI mucosal changes in patients with congestive heart failure. Gastrointest Endosc. 2004;60:887–93.

    Article  PubMed  Google Scholar 

  22. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.

    Article  PubMed  CAS  Google Scholar 

  23. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6.

    Article  PubMed  CAS  Google Scholar 

  24. Deswal A, Petersen NJ, Feldman AM. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103:2055–9.

    Article  PubMed  CAS  Google Scholar 

  25. Tracey KJ, Morgello S, Koplin B, et al. Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia. J Clin Invest. 1990;86:2014–24.

    Article  PubMed  CAS  Google Scholar 

  26. Bolger AP, Anker SD. Tumour necrosis factor in chronic heart failure: a peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs. 2000;60:1245–57.

    Article  PubMed  CAS  Google Scholar 

  27. Yndestad A, Damas JK, Oie E, et al. Systemic inflammation in heart failure—the whys and wherefores. Heart Fail Rev. 2006;11:83–92.

    Article  PubMed  CAS  Google Scholar 

  28. Seta Y, Shan K, Bozkurt B, et al. Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail. 1996;2:243–9.

    Article  PubMed  CAS  Google Scholar 

  29. Hasper D, Hummel M, Kleber FX, et al. Systemic inflammation in patients with heart failure. Eur Heart J. 1998;19:761–5.

    Article  PubMed  CAS  Google Scholar 

  30. von Haehling S, Genth-Zotz S, Anker SD, Volk HD. Cachexia: a therapeutic approach beyond cytokine antagonism. Int J Cardiol. 2002;85:173–83.

    Article  Google Scholar 

  31. Anker SD, Egerer KR, Volk HD, et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol. 1997;79:1426–30.

    Article  PubMed  CAS  Google Scholar 

  32. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353:1838–42.

    Article  PubMed  CAS  Google Scholar 

  33. Rauchhaus M, Koloczek V, Volk H, et al. Inflammatory cytokines and the possible immunological role for lipoproteins in chronic heart failure. Int J Cardiol. 2000;76:125–33.

    Article  PubMed  CAS  Google Scholar 

  34. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20:683–93.

    Article  PubMed  CAS  Google Scholar 

  35. Anand IS, Florea VG. Traditional and novel approaches to management of heart failure: successes and failures. Cardiol Clin. 2008;26:59–72.

    Article  PubMed  Google Scholar 

  36. Mann DL, Kent RL, Parsons B, Cooper IV G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation. 1992;85:790–804.

    Article  PubMed  CAS  Google Scholar 

  37. Obisesan TO, Toth MJ, Donaldson K, et al. Energy expenditure and symptom severity in men with heart failure. Am J Cardiol. 1996;77:1250–2.

    Article  PubMed  CAS  Google Scholar 

  38. Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003;107:1278–83.

    Article  PubMed  CAS  Google Scholar 

  39. Brasier AR, Recinos 3rd A, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol. 2002;22:1257–66.

    Article  PubMed  CAS  Google Scholar 

  40. Werner C, Werdan K, Ponicke K, Brodde OE. Impaired beta-adrenergic control of immune function in patients with chronic heart failure: reversal by beta1-blocker treatment. Basic Res Cardiol. 2001;96:290–8.

    Article  PubMed  CAS  Google Scholar 

  41. Krack A, Sharma R, Figulla HR, Anker SD. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J. 2005;26:2368–74.

    Article  PubMed  CAS  Google Scholar 

  42. Boxall BW, Clark AL. Beta-blockers and weight change in patients with chronic heart failure. J Card Fail. 2012;18:233–7.

    Article  PubMed  CAS  Google Scholar 

  43. Coats AJ, Anker SD, Roeker EB, et al. Prevention and reversal of cardiac cachexia in patients with severe heart failure by carvedilol: results of the COPERNICUS study. Circulation. 2001;104:437.

    Google Scholar 

  44. Pittman JG, Cohen P. The pathogenesis of cardiac cachexia. N Engl J Med. 1964;271:403–9.

    Article  PubMed  CAS  Google Scholar 

  45. Toth MJ, LeWinter MM, Ades PA, Matthews DE. Impaired muscle protein anabolic response to insulin and amino acids in heart failure patients: relationship with markers of immune activation. Clin Sci (Lond). 2010;119:467–76.

    Article  CAS  Google Scholar 

  46. von Haehling S, Lainscak M, Springer J, Anker SD. Cardiac cachexia: a systematic overview. Pharmacol Ther. 2009;121:227–52.

    Article  Google Scholar 

  47. Underwood L, Van Wyk J. Normal and aberrant growth. In: Wilson J, Foster D, editors. Williams textbook of endocrinology. Philadelphia: WB Saunders; 1992. p. 1079–138.

    Google Scholar 

  48. Cicoira M, Kalra PR, Anker SD. Growth hormone resistance in chronic heart failure and its therapeutic implications. J Card Fail. 2003;9:219–26.

    Article  PubMed  CAS  Google Scholar 

  49. Isgaard J, Bergh CH, Caidahl K, et al. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J. 1998;19:1704–11.

    Article  PubMed  CAS  Google Scholar 

  50. Osterziel KJ, Strohm O, Schuler J, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet. 1998;351:1233–7.

    Article  PubMed  CAS  Google Scholar 

  51. Frustaci A, Gentiloni N, Russo MA. Growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med. 1996;335:672–4.

    Article  PubMed  CAS  Google Scholar 

  52. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  CAS  Google Scholar 

  53. Nagaya N, Uematsu M, Kojima M, et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation. 2001;104:2034–8.

    Article  PubMed  CAS  Google Scholar 

  54. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110:3674–9.

    Article  PubMed  CAS  Google Scholar 

  55. Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature. 1982;296:659–60.

    Article  PubMed  CAS  Google Scholar 

  56. Krysiak R, Obuchowicz E, Herman ZS. Interactions between the neuropeptide Y system and the hypothalamic-pituitary-adrenal axis. Eur J Endocrinol. 1999;140:130–6.

    Article  PubMed  CAS  Google Scholar 

  57. Feng Q, Lambert ML, Callow ID, Arnold JM. Venous neuropeptide Y receptor responsiveness in patients with chronic heart failure. Clin Pharmacol Ther. 2000;67:292–8.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  PubMed  CAS  Google Scholar 

  59. Houseknecht KL, Baile CA, Matteri RL, et al. The biology of leptin: a review. J Anim Sci. 1998;76:1405–20.

    PubMed  CAS  Google Scholar 

  60. Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. Int J Cardiol. 2002;83:73–81.

    Article  PubMed  Google Scholar 

  61. •• Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013;1:93–102. This review discusses the obesity paradox and its implication in heart failure.

    Article  Google Scholar 

  62. Horwich TB, Fonarow GC, Hamilton MA, et al. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38:789–95.

    Article  PubMed  CAS  Google Scholar 

  63. Fonarow GC, Srikanthan P, Costanzo MR, et al. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J. 2007;153:74–81.

    Article  PubMed  Google Scholar 

  64. Mohamed-Ali V, Goodrick S, Bulmer K, et al. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol. 1999;277:E971–5.

    PubMed  CAS  Google Scholar 

  65. Lavie CJ, Cahalin LP, Chase P, et al. Impact of cardiorespiratory fitness on the obesity paradox in patients with heart failure. Mayo Clin Proc. 2013;88:251–8.

    Article  PubMed  Google Scholar 

  66. McAuley PA, Artero EG, Sui X, et al. The obesity paradox, cardiorespiratory fitness, and coronary heart disease. Mayo Clin Proc. 2012;87:443–51.

    Article  PubMed  Google Scholar 

  67. • Okoshi MP, Romeiro FG, Paiva SA, Okoshi K. Heart failure-induced cachexia. Arq Bras Cardiol. 2013;100:476–82. This review discusses the pathophysiology of cardiac cachexia.

    PubMed  Google Scholar 

  68. Mustafa I, Leverve X. Metabolic and nutritional disorders in cardiac cachexia. Nutrition. 2001;17:756–60.

    Article  PubMed  CAS  Google Scholar 

  69. Downing J, Balady GJ. The role of exercise training in heart failure. J Am Coll Cardiol. 2011;58:561–9.

    Article  PubMed  Google Scholar 

  70. Kinugawa T, Kato M, Ogino K, et al. Interleukin-6 and tumor necrosis factor-alpha levels increase in response to maximal exercise in patients with chronic heart failure. Int J Cardiol. 2003;87:83–90.

    Article  PubMed  Google Scholar 

  71. Sigurdsson A, Swedberg K, Ullman B. Effects of ramipril on the neurohormonal response to exercise in patients with mild or moderate congestive heart failure. Eur Heart J. 1994;15:247–54.

    Article  PubMed  CAS  Google Scholar 

  72. van Veldhuisen DJ, Genth-Zotz S, Brouwer J, et al. High- versus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J Am Coll Cardiol. 1998;32:1811–8.

    Article  PubMed  Google Scholar 

  73. Liu L, Zhao SP. The changes in circulating tumor necrosis factor levels in patients with congestive heart failure influenced by therapy. Int J Cardiol. 1999;69:77–82.

    Article  PubMed  CAS  Google Scholar 

  74. Corbalan R, Acevedo M, Godoy I, et al. Enalapril restores depressed circulating insulin-like growth factor 1 in patients with chronic heart failure. J Card Fail. 1998;4:115–9.

    Article  PubMed  CAS  Google Scholar 

  75. Tsutamoto T, Wada A, Maeda K, et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol. 2000;35:714–21.

    Article  PubMed  CAS  Google Scholar 

  76. Anker SD, Lechat P, Dargie HJ. Prevention and reversal of cachexia in patients with chronic heart failure by bisoprolol: results from the CIBIS-II study. J Am Coll Cardiol. 2003;41:156A–7.

    Article  Google Scholar 

  77. Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res. 2006;53:482–91.

    Article  PubMed  CAS  Google Scholar 

  78. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320:265–71.

    Article  PubMed  CAS  Google Scholar 

  79. Sharma R, Anker SD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol. 2002;85:161–71.

    Article  PubMed  Google Scholar 

  80. Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 1999;99:3224–6.

    Article  PubMed  CAS  Google Scholar 

  81. Coletta AP, Clark AL, Banarjee P, Cleland JG. Clinical trials update: RENEWAL (RENAISSANCE and RECOVER) and ATTACH. Eur J Heart Fail. 2002;4:559–61.

    Article  PubMed  CAS  Google Scholar 

  82. Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40.

    Article  PubMed  CAS  Google Scholar 

  83. Anker SD, Coats AJ. How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol. 2002;86:123–30.

    Article  PubMed  Google Scholar 

  84. Doherty GM, Jensen JC, Alexander HR, et al. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery. 1991;110:192–8.

    PubMed  CAS  Google Scholar 

  85. Zabel P, Wolter DT, Schonharting MM, Schade UF. Oxpentifylline in endotoxaemia. Lancet. 1989;2:1474–7.

    Article  PubMed  CAS  Google Scholar 

  86. Skudicky D, Bergemann A, Sliwa K, et al. Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation. 2001;103:1083–8.

    Article  PubMed  CAS  Google Scholar 

  87. Sliwa K, Skudicky D, Candy G, et al. The addition of pentoxifylline to conventional therapy improves outcome in patients with peripartum cardiomyopathy. Eur J Heart Fail. 2002;4:305–9.

    Article  PubMed  CAS  Google Scholar 

  88. Shaw SM, Shah MK, Williams SG, Fildes JE. Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail. 2009;11:113–8.

    Article  PubMed  CAS  Google Scholar 

  89. Caminiti G, Volterrani M, Iellamo F, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54:919–27.

    Article  PubMed  CAS  Google Scholar 

  90. Tomoda H. Effect of oxymetholone on left ventricular dimensions in heart failure secondary to idiopathic dilated cardiomyopathy or to mitral or aortic regurgitation. Am J Cardiol. 1999;83:123–5.

    Article  PubMed  CAS  Google Scholar 

  91. Vadell C, Segui MA, Gimenez-Arnau JM, et al. Anticachectic efficacy of megestrol acetate at different doses and versus placebo in patients with neoplastic cachexia. Am J Clin Oncol. 1998;21:347–51.

    Article  PubMed  CAS  Google Scholar 

  92. Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC. Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail. 2002;8:216–24.

    Article  PubMed  CAS  Google Scholar 

  93. Krum H, Ashton E, Reid C, et al. Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure. J Card Fail. 2007;13:1–7.

    Article  PubMed  CAS  Google Scholar 

  94. Sola S, Mir MQ, Lerakis S, et al. Atorvastatin improves left ventricular systolic function and serum markers of inflammation in nonischemic heart failure. J Am Coll Cardiol. 2006;47:332–7.

    Article  PubMed  CAS  Google Scholar 

  95. Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997;100:2671–9.

    Article  PubMed  CAS  Google Scholar 

  96. Chan DC, Watts GF, Barrett PH, et al. Effect of atorvastatin and fish oil on plasma high-sensitivity C-reactive protein concentrations in individuals with visceral obesity. Clin Chem. 2002;48:877–83.

    PubMed  CAS  Google Scholar 

  97. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Vincent Pureza and Viorel G. Florea declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel G. Florea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pureza, V., Florea, V.G. Mechanisms for Cachexia in Heart Failure. Curr Heart Fail Rep 10, 307–314 (2013). https://doi.org/10.1007/s11897-013-0153-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0153-9

Keywords

Navigation